精英家教网 > 初中数学 > 题目详情
x
y
=
1
2
,则下列错误的是(  )
分析:先由比例的基本性质得出y=2x,再依次代入各选项,求出其值,即可判断.
解答:解:∵
x
y
=
1
2
,∴y=2x.
A、
x+y
y
=
x+2x
2x
=
3
2
,正确,故本选项不符合题意;
B、
x
x+y
=
x
x+2x
=
1
3
,正确,故本选项不符合题意;
C、
x+y
x-y
=
x+2x
x-2x
=-3,错误,故本选项符合题意;
D、
x+2y
y
=
x+4x
2x
=
5
2
,正确,故本选项不符合题意.
故选C.
点评:本题主要考查了比例的基本性质,是基础题,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列命题:①若x2=2010×2012+1,则x=2011;②若xy<0,且
a-2y+1
+(x+1)2=0,则a>-1;③若一直角梯形的两条对角线的长分别为9和11,上、下两底长都是整数,则该梯形的高为6
2
;④已知方程ax2+bx+c=0(a>b>c)的一个根为1,则另一个根k的取值范围是-2<k<-
1
2

其中正确的命题的序号为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列等式结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏苏州立达中学七年级下期末考试数学试卷(解析版) 题型:选择题

用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用xy表示矩形的长和宽(xy),则下列关系式中不正确的是        ( ▲ )

   A.  x+y=12    B.  xy=2    C.  xy=35   D.  xy=144

 

查看答案和解析>>

同步练习册答案