已知二次函数.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。
解:(1)∵二次函数的图象经过坐标原点O(0,0),
∴代入得:,解得:m=±1。
∴二次函数的解析式为:或。
(2)∵m=2,∴二次函数为:。
∴抛物线的顶点为:D(2,-1)。
当x=0时,y=3,
∴C点坐标为:(0,3)。
(3)存在,当P、C、D共线时PC+PD最短。
过点D作DE⊥y轴于点E,
∵PO∥DE,∴△COP∽△CED。
∴,即,解得:
∴PC+PD最短时,P点的坐标为:P(,0)。
解析试题分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可。
(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可。
(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案。
科目:初中数学 来源: 题型:解答题
如图,抛物线与轴交于点A(-1,0)、B(3,0),与轴交于点C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为 时,四边形FQAC是平行四边形;当点F的坐标为 时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线与直线交于点.点是抛物线上,之间的一个动点,过点分别作轴、轴的平行线与直线交于点,.
(1)求抛物线的函数解析式;
(2)若点的横坐标为2,求的长;
(3)以,为边构造矩形,设点的坐标为,求出之间的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
矩形纸片ABCD中,AB=5,AD=4.
(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;
(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
先阅读以下材料,然后解答问题:
材料:将二次函数的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变)。
解:在抛物线上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到(,3),再向下平移2个单位得到(,1);点B向左平移1个单位得到(0,4),再向下平移2个单位得到(0,2)。
设平移后的抛物线的解析式为。
则点(,1),(0,2)在抛物线上。
可得:,解得:。
所以平移后的抛物线的解析式为:。
根据以上信息解答下列问题:
将直线向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.
(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com