精英家教网 > 初中数学 > 题目详情
15.如图,△ABC内接于半径为5的圆心O,圆心O到弦BC的距离等于3,则tanA等于(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 作直径BD,连接CD,作OH⊥BC于H,根据垂径定理和三角形中位线定理求出CD,根据勾股定理求出BC,根据正切的概念计算即可.

解答 解:作直径BD,连接CD,作OH⊥BC于H,
则OH=3,BH=HC,
∵BO=OD,BH=HC,
∴CD=2OH=6,
∵BD为直径,
∴∠BCD=90°,
由勾股定理得,BC=$\sqrt{B{D}^{2}-C{D}^{2}}$=8,
∴tanD=$\frac{BC}{CD}$=$\frac{4}{3}$,
∵∠D=∠A,
∴tanA=$\frac{4}{3}$,
故选:A.

点评 本题考查的是三角形的外接圆和外心、垂径定理和勾股定理,掌握正切的概念、圆周角定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.如图1,在等边三角形△ABC中,点P以每秒1cm的速度从点A出发,沿折线AB-BC运动,到点C停止,过点P作PD⊥AC,垂足为D,PD的长度y(cm)与点P的运动时间x(秒)的函数图象如图2所示,当点P运动5.5秒时,PD的长是(  )
A.$\frac{5\sqrt{3}}{4}$cmB.$\frac{5\sqrt{3}}{2}$cmC.2$\sqrt{3}$cmD.3$\sqrt{3}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)求证:EG2=$\frac{1}{2}$GF×AF;
(3)若tan∠FEC=$\frac{3}{4}$,折痕AF=5$\sqrt{5}$cm,则矩形ABCD的周长为36cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.调查显示,截止2016年底某市汽车拥有量为16.9万辆,已知2014年底该市汽车拥有量为10万辆,设2014年底至2016年底该市汽车拥有量的平均增长率为x,根据题意列方程得(  )
A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1-x)2=16.9D.10(1-2x)=16.9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,矩形OABC的四个顶点分别为O(0,0),A(2,0),B(2,1),C(0,1),P(x,y)是反比例函数y=$\frac{1}{x}$(x>0)图象上的一个动点,过点P作PM⊥x轴,PN⊥y轴,M、N为垂足,记矩形OMPN与矩形OABC的重叠部分面积为S,则S与x轴的函数关系式的图象为(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,A、B是双曲线y=$\frac{k}{x}$上的点,点A的坐标是(1,4),B是线段AC的中点,则△OAC的面积为(  )
A.6B.4C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图1,在矩形ABCD中,动点P从点B出发,沿BC→CD→DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示,则m的值是(  )
A.6B.8C.11D.16

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c经过A、B、C三点,已知B(4,0),C(2,-6).
(1)求该抛物线的解析式和点A的坐标;
(2)点D(m,n)(-1<m<2)在抛物线图象上,当△ACD的面积为$\frac{27}{8}$时,求点D的坐标;
(3)在(2)的条件下,设抛物线的对称轴为l,点D关于l的对称点为E,能否在抛物线图象和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若a与-5互为相反数,则a的值是(  )
A.$-\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

查看答案和解析>>

同步练习册答案