精英家教网 > 初中数学 > 题目详情

【题目】如图,在△OAB中,∠AOB90°,AO2BO4.将△OAB绕顶点O按顺时针方向旋转到△OA1B1处,此时线段OB1AB的交点D恰好为线段AB的中点,线段A1B1OA交于点E,则图中阴影部分的面积__

【答案】

【解析】

根据题意求出△AOB的面积,在根据直角三角形斜边中线的性质得出ODBDAD,从而判断出ODA=∠OAD,再根据旋转的性质和勾股定理,得出A1OOE的长度,再根据三角形面积公式计算求解即可.

如图,

∵∠AOB90°,AO2BO4

SAOB×2×44AB2

∵∠AOB90°,点DAB中点,

ODBDAD

∴∠ODA=∠OAD

∵将△OAB绕顶点O按顺时针方向旋转到△OA1B1处,

∴∠B=∠B1SAOB4A1OAO2

∵∠B+OAD90°,

∴∠B1+AOD90°,

∴∠OEB190°,

4×2×OE

OE

A1E

∴图中阴影部分的面积=××

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,中,,点从点出发沿方向匀速运动,速度为1上位于点右侧的动点,点上的动点,在运动过程中始终保持cm.过,当点与点重合时点停止运动.设的而积为,点的运动时问为的函数关系如图②所示:

1=_______=_______

2)设四边形的面积为,求的最大值;

3)是否存在的值,使得以为顶点的三角形与相似?如果存在,求的值;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小宇在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法,他站在自家C处测得对面楼房底端B的俯角为45°,测得对面楼房顶端A的仰角为30°,并量得两栋楼房间的距离为9米,请你用小宇测得的数据求出对面楼房AB的高度.(结果保留到整数,参考数据:1.41.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+ca0)交x轴于点A20),B(﹣30),交y轴于点C,且经过点d(﹣6,﹣6),连接ADBD

1)求该抛物线的函数关系式;

2)若点MX轴上方的抛物线上一点,能否在点A左侧的x轴上找到另一点N,使得△AMN与△ABD相似?若相似,请求出此时点M、点N的坐标;若不存在,请说明理由;

3)若点P是直线AD上方的抛物线上一动点(不与AD重合),过点PPQy轴交直线AD于点Q,以PQ为直径作E,则E在直线AD上所截得的线段长度的最大值等于   .(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.

请根据以上信息,解答下列问题:

(1)这次被调查的学生共有多少人?

(2)请将条形统计图补充完整;

(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?

(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018无锡市体育中考男生项目分为速度耐力类、力量类和灵巧类,每位考生只能在三类中各选一项进行考试.其中速度耐力类项目有:50米跑、800米跑、50米游泳;力量类项目有:掷实心球、引体向上;灵巧类项目有:30秒钟跳绳、立定跳远、俯卧撑、篮球运球.男生小明“50米跑是强项,他决定必选,其它项目在平时测试中成绩完全相同,他决定随机选择.

(1)请用画树状图或列表的方法求小明50米跑、引体向上和立定跳远’”的概率;

(2)小明所选的项目中有立定跳远的概率是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线与直线都经过两点,该抛物线的顶点为C

1)求此抛物线和直线的解析式;

2)设直线与该抛物线的对称轴交于点E,在射线上是否存在一点M,过Mx轴的垂线交抛物线于点N,使点MNCE是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;

3)设点P是直线下方抛物线上的一动点,当面积最大时,求点P的坐标,并求面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了扎实推进精准扶贫工作,某市出台了民生兜底、医保脱贫、教育教助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了25种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为类贫困户。为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:

请根据图中信息回答下面的问题:

1)本次抽样调查了多少户贫困户;

2)抽查了多少户类贫困户?并补全统计图;

3)若该地共有1300户贫困户,请估计至少得到4项帮扶措施的大约有多少户;

4)为更好地做好精准扶贫工作,现准备从类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,对角线ACBD交于点OAEBDEOEED=1:3.AEBD=(  )

A.B.C.4D.2

查看答案和解析>>

同步练习册答案