【题目】如图,在△OAB中,∠AOB=90°,AO=2,BO=4.将△OAB绕顶点O按顺时针方向旋转到△OA1B1处,此时线段OB1与AB的交点D恰好为线段AB的中点,线段A1B1与OA交于点E,则图中阴影部分的面积__.
【答案】.
【解析】
根据题意求出△AOB的面积,在根据直角三角形斜边中线的性质得出OD=BD=AD,从而判断出∠ODA=∠OAD,再根据旋转的性质和勾股定理,得出A1O和OE的长度,再根据三角形面积公式计算求解即可.
如图,
∵∠AOB=90°,AO=2,BO=4,
∴S△AOB=×2×4=4,AB===2,
∵∠AOB=90°,点D是AB中点,
∴OD=BD=AD,
∴∠ODA=∠OAD,
∵将△OAB绕顶点O按顺时针方向旋转到△OA1B1处,
∴∠B=∠B1,S△AOB==4,A1O=AO=2,
∵∠B+∠OAD=90°,
∴∠B1+∠AOD=90°,
∴∠OEB1=90°,
∴=4=×2×OE,
∴OE=,
∴A1E===,
∴图中阴影部分的面积=××=,
故答案为:
科目:初中数学 来源: 题型:
【题目】如图①,中,,点从点出发沿方向匀速运动,速度为1点是上位于点右侧的动点,点是上的动点,在运动过程中始终保持,cm.过作交于,当点与点重合时点停止运动.设的而积为,点的运动时问为,与的函数关系如图②所示:
(1)=_______,=_______;
(2)设四边形的面积为,求的最大值;
(3)是否存在的值,使得以,,为顶点的三角形与相似?如果存在,求的值;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小宇在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法,他站在自家C处测得对面楼房底端B的俯角为45°,测得对面楼房顶端A的仰角为30°,并量得两栋楼房间的距离为9米,请你用小宇测得的数据求出对面楼房AB的高度.(结果保留到整数,参考数据:≈1.4,≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于点A(2,0),B(﹣3,0),交y轴于点C,且经过点d(﹣6,﹣6),连接AD,BD.
(1)求该抛物线的函数关系式;
(2)若点M为X轴上方的抛物线上一点,能否在点A左侧的x轴上找到另一点N,使得△AMN与△ABD相似?若相似,请求出此时点M、点N的坐标;若不存在,请说明理由;
(3)若点P是直线AD上方的抛物线上一动点(不与A,D重合),过点P作PQ∥y轴交直线AD于点Q,以PQ为直径作⊙E,则⊙E在直线AD上所截得的线段长度的最大值等于 .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.
请根据以上信息,解答下列问题:
(1)这次被调查的学生共有多少人?
(2)请将条形统计图补充完整;
(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?
(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018无锡市体育中考男生项目分为速度耐力类、力量类和灵巧类,每位考生只能在三类中各选一项进行考试.其中速度耐力类项目有:50米跑、800米跑、50米游泳;力量类项目有:掷实心球、引体向上;灵巧类项目有:30秒钟跳绳、立定跳远、俯卧撑、篮球运球.男生小明“50米跑”是强项,他决定必选,其它项目在平时测试中成绩完全相同,他决定随机选择.
(1)请用画树状图或列表的方法求“小明‘选50米跑、引体向上和立定跳远’”的概率;
(2)小明所选的项目中有立定跳远的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线与直线都经过、两点,该抛物线的顶点为C.
(1)求此抛物线和直线的解析式;
(2)设直线与该抛物线的对称轴交于点E,在射线上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;
(3)设点P是直线下方抛物线上的一动点,当面积最大时,求点P的坐标,并求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了扎实推进精准扶贫工作,某市出台了民生兜底、医保脱贫、教育教助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为类贫困户。为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:
请根据图中信息回答下面的问题:
(1)本次抽样调查了多少户贫困户;
(2)抽查了多少户类贫困户?并补全统计图;
(3)若该地共有1300户贫困户,请估计至少得到4项帮扶措施的大约有多少户;
(4)为更好地做好精准扶贫工作,现准备从类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com