精英家教网 > 初中数学 > 题目详情

【题目】(发现)x45x2+40是一个一元四次方程.

(探索)根据该方程的特点,通常用“换元法”解方程:

x2y,那么x4y2,于是原方程可变为   

解得:y11y2   

y1时,x21,∴x=±1

y   时,x2   ,∴x   

原方程有4个根,分别是   

(应用)仿照上面的解题过程,求解方程:

【答案】y25y+40555,±x1=﹣1x21x3x4=﹣x=1

【解析】

(探索)本题考查了利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.

(应用)利用题中给出的方法先把当成一个整体a来计算,求出a的值,再解分式方程.

(探索)x2y,那么x4y2,于是原方程可变为:y25y+40

解得:y11y25

y1时,x21,∴x±1

y5 时,x25,∴x±

原方程有4个根,分别是x1=﹣1x21x3x4=﹣

故答案为:y25y+40555x1=﹣1x21x3x4=﹣

(应用)

a,则,原方程可化为a+2

a22a+10

解得a1a21

经检验:a1是分式方程的解,

1,得2xx+1x1

经检验原方程的解为x1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本题满分8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.

(1)求新传送带AC的长度;

(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:1.41,1.73,2.24,2.45)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.

(1)求m的值及该抛物线的解析式

(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标.

(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数y=ax2-2ax+ca≠0)的图象与y轴交于点C04),与x轴交于点AB,点A的坐标为(40).

1)求该二次函数的关系式;

2)写出该二次函数的对称轴和顶点坐标;

3)点Q是线段AB上的动点,过点QQEAC,交BC于点E,连接CQ.当CQE的面积最大时,求点Q的坐标;

4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(20).问:是否存在这样的直线l,使得ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.某商场为缓解停车难问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,ABBD,BAD=18°,CBD,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说得对?请你判断并计算出正确的结果.(结果精确到0.1 m,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yx22x3的图象与x轴交于AB两点,与y轴交于点C,则下列说法错误的是(  )

A. AB4

B. ABC45°

C. x0时,y<﹣3

D. x1时,yx的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1D是⊙O的直径BC上的一点,过DDEBC交⊙OENF是⊙O上的一点,过F的直线分别与CBDE的延长线相交于AP,连结CFPDM,∠CP

1)求证:PA是⊙O的切线;

2)若∠A30°,⊙O的半径为4DM1,求PM的长;

3)如图2,在(2)的条件下,连结BFBM;在线段DN上有一点H,并且以HDC为顶点的三角形与△BFM相似,求DH的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+3的图象与x轴交于AC两点(点A在点C的左侧),与y轴交于点B,且OAOB

1)求线段AC的长度;

2)若点P在抛物线上,点P位于第二象限,过PPQAB,垂足为Q.已知PQ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5x5.5,另外每天还需支付其他各项费用80元.

销售单价x(元)

3.5

5.5

销售量y(袋)

280

120

1)请直接写出yx之间的函数关系式;

2)如果每天获得160元的利润,销售单价为多少元?

3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?

查看答案和解析>>

同步练习册答案