精英家教网 > 初中数学 > 题目详情

在正方形ABCD的对角线AC上取一点E,使EA=BA,并且作EF⊥AC交BC于F,则下列关系成立的是

[  ]

A.BF=EC

B.BF>EC

C.BF<EC

D.BF、EC大小不定

答案:A
解析:

解:连接AF

∵四边形ABCD是正方形,EF⊥AC

∴∠B=∠AEF=90°∠ACB=45°

∵EA=BA   AF=AF

∴△AEF≌△ABF(HL)

∴EF=BF

∵EF⊥AC  ∠ACB=45°

∴∠ACB=∠EFC=45°

∴EF=EC

∴BF=EC


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,EF为正方形ABCD的对折线,将∠A沿DK折叠使它的顶点A落在EF上的G点,则∠DKG为(  )
A、15°B、30°C、55°D、75°

查看答案和解析>>

科目:初中数学 来源: 题型:

勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积=16,AE=1;则正方形EFGH的面积=
10
10

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上虞市模拟)复习完“四边形”内容后,老师出示下题:
如图1,直角三角板的直角顶点P在正方形ABCD的对角线BD上移动,一直角边始终经过点C,另一直角边交直线AB于点Q,连接QC.求证:∠PQC=∠DBC.
(1)请你完成上面这道题;
(2)完成上题后,同学们在老师的启发下进行了反思,提出许多问题,如:
①如图2,若将题中的条件“正方形ABCD”改为“矩形ABCD”,其余条件都不变,是否仍能得到∠PQC=∠DBC?
②如图3,若将题中的条件“正方形ABCD”改为“直角梯形ABCD”,其余条件都不变,是否仍能得到∠PQC=∠DBC?

请你对上述反思①和②作出判断,在下列横线上填写“是”或“否”:①
;②
.并对①、②中的判断,选择其中一个说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图(1),点M,N分别在等边△ABC的BC,AC边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.
(2)判断下列命题的真假性:
①若将题(1)中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题(1)中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?(如图2)
③若将题(1)中的条件“点M,N分别在正△ABC的BC,AC边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?(如图3)
在下列横线上填写“是”或“否”:①
;②
;③
.并对②,③的判断,选择其中的一个给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,过正方形ABCD内部任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,证明:EF=GH;
(2)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?图2是其中一种情形,试就该图形对你的结论加以证明.

查看答案和解析>>

同步练习册答案