试题分析:(1)已知了O、A、B的坐标,可用待定系数法求出抛物线的解析式,进而可得到其对称轴方程和顶点M的坐标.
(2)在两条直线平移的过程中,梯形的上下底发生了改变,但是梯形的高没有变化,仍为3,即y
2-y
1=3,可根据抛物线的解析式,用x
1、x
2表示出y
1、y
2,然后联立y
2-y
1=3,可得到第一个关于x
1、x
2的关系式①;在两条直线平移过程中,抛物线的对称轴没有变化,可用x
1、x
2以及抛物线的对称轴解析式表示出梯形上下底的长,进而可得到梯形面积的表达式,这样可得到另外一个x
1、x
2的关系式②,联立两个关系式,即可得到关于(x
2-x
1)与S的关系式③,将S=36代入②③的关系式中,即可列方程组求得x
1、x
2的值,进而可求出A点的坐标.
(3)要解答此题,首先要弄清几个关键点:
一、当PQ∥AB时,设直线AB与抛物线对称轴的交点为E,可得△DPQ∽△DBE,可用t表示出DP、DQ的长,而E点坐标易求得,根据相似三角形所得比例线段,即可得到此时t的值即t=
;
二、当P、Q都停止运动时,显然BC>DM,所以此时t=DM÷1=3
;可分两种情况讨论:
①当0<t<
时,设直线PQ与直线AB的交点为F,与x轴的交点为G;由题意知△FQE∽△FAG,得∠FGA=∠FEQ,由于BC∥x轴,则∠DPQ=∠FGA=∠FEQ,由此可证得△DPQ∽△DEB,DB、DE的长已求得,可用t表示出DP、DQ的长,根据相似三角形所得比例线段,即可求得此时t的值;
②当
<t<3
时,方法同①;
在求得t的值后,还要根据各自的取值范围将不合题意的解舍去.
试题解析::(1)对称轴:直线x=1,
解析式:y=
x
2-
x,
顶点坐标:M(1,-
).
(2)由题意得y
2-y
1=3,y
2-y
1=
x
22-
x
2-
x
12+
x
1=3,
得:(x
2-x
1)[
(x
2+x
1)-
]=3①,
s=
=3(x
1+x
2)-6,
得:x
1+x
2=
+2②,
把②代入①并整理得:x
2-x
1=
(S>0),
当s=36时,
,
解得:
,
把x
1=6代入抛物线解析式得y
1=3,
∴点A
1(6,3).
(3)存在
易知直线AB的解析式为y=
x-
,可得直线AB与对称轴的交点E的坐标为(1,-
),
∴BD=5,DE=
,DP=5-t,DQ=t,
当PQ∥AB时,
,即
,
得t=
,
下面分两种情况讨论:设直线PQ与直线AB、x轴的交点分别为点F、G;
当0<t<
时,如图1-1;
∵△FQE∽△FAG,∴∠FGA=∠FEQ,
∴∠DPQ=∠DEB;易得△DPQ∽△DEB,
∴
,
∴
,
得t=
>
,
∴t=
(舍去);
当
<t<3
时,如图1-2;
∵△FQE∽△FAG,
∴∠FAG=∠FQE,
∵∠DQP=∠FQE,∠FAG=∠EBD,
∴∠DQP=∠DBE,易得△DPQ∽△DEB,
∴
∴
,
∴t=
;
∴当t=
秒时,使直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似.