精英家教网 > 初中数学 > 题目详情
如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
  
(1)对称轴:直线x=1,解析式:y=x2-x,顶点坐标:M(1,-).(2) A1(6,3).(3) t=.

试题分析:(1)已知了O、A、B的坐标,可用待定系数法求出抛物线的解析式,进而可得到其对称轴方程和顶点M的坐标.
(2)在两条直线平移的过程中,梯形的上下底发生了改变,但是梯形的高没有变化,仍为3,即y2-y1=3,可根据抛物线的解析式,用x1、x2表示出y1、y2,然后联立y2-y1=3,可得到第一个关于x1、x2的关系式①;在两条直线平移过程中,抛物线的对称轴没有变化,可用x1、x2以及抛物线的对称轴解析式表示出梯形上下底的长,进而可得到梯形面积的表达式,这样可得到另外一个x1、x2的关系式②,联立两个关系式,即可得到关于(x2-x1)与S的关系式③,将S=36代入②③的关系式中,即可列方程组求得x1、x2的值,进而可求出A点的坐标.
(3)要解答此题,首先要弄清几个关键点:
一、当PQ∥AB时,设直线AB与抛物线对称轴的交点为E,可得△DPQ∽△DBE,可用t表示出DP、DQ的长,而E点坐标易求得,根据相似三角形所得比例线段,即可得到此时t的值即t=
二、当P、Q都停止运动时,显然BC>DM,所以此时t=DM÷1=3;可分两种情况讨论:
①当0<t<时,设直线PQ与直线AB的交点为F,与x轴的交点为G;由题意知△FQE∽△FAG,得∠FGA=∠FEQ,由于BC∥x轴,则∠DPQ=∠FGA=∠FEQ,由此可证得△DPQ∽△DEB,DB、DE的长已求得,可用t表示出DP、DQ的长,根据相似三角形所得比例线段,即可求得此时t的值;
②当<t<3 时,方法同①;
在求得t的值后,还要根据各自的取值范围将不合题意的解舍去.
试题解析::(1)对称轴:直线x=1,
解析式:y=x2-x,
顶点坐标:M(1,-).
(2)由题意得y2-y1=3,y2-y1=x22-x2-x12+x1=3,
得:(x2-x1)[(x2+x1)-]=3①,
s==3(x1+x2)-6,
得:x1+x2=+2②,
把②代入①并整理得:x2-x1=(S>0),
当s=36时,
解得:
把x1=6代入抛物线解析式得y1=3,
∴点A1(6,3).
(3)存在
易知直线AB的解析式为y=x-,可得直线AB与对称轴的交点E的坐标为(1,-),
∴BD=5,DE=,DP=5-t,DQ=t,
当PQ∥AB时,,即
得t=
下面分两种情况讨论:设直线PQ与直线AB、x轴的交点分别为点F、G;
当0<t<时,如图1-1;
∵△FQE∽△FAG,∴∠FGA=∠FEQ,
∴∠DPQ=∠DEB;易得△DPQ∽△DEB,


得t=
∴t=(舍去);
<t<3时,如图1-2;
∵△FQE∽△FAG,
∴∠FAG=∠FQE,
∵∠DQP=∠FQE,∠FAG=∠EBD,
∴∠DQP=∠DBE,易得△DPQ∽△DEB,


∴t=
∴当t=秒时,使直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中62环,如果他要打破90环(每次射击以1到10环的整数环计算)的记录,问第8次射击不能少于(  )
A.7环B.8环C.9环D.10环

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在等式3x-2y2=0,x2+y2=1,y=
x
,y=|x|,x=|y|,y是x的函数的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小明每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到,他加快了速度,以每分45米的速度行走完剩下的路程,那么小明行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是   (   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列函数中,自变量的取值范围是x>3的是(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知等腰三角形ABC的底边AB在x轴上,A点坐标为(1,0)顶点C的纵坐标为4,AC=,则B点的坐标为             

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数中自变量的取值范围是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

日出日落,一天的气温随时间的变化而变化,在这一问题中,自变量是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数中,自变量的取值范围是__________.

查看答案和解析>>

同步练习册答案