精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的弦,C为弦AB上一点,设AC=mBC=nmn),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2n2)π,则=_____

【答案】

【解析】

先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.

如图,连接OB、OC,以O为圆心,OC为半径画圆,

则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,

即S=πOB2-πOC2=(m2-n2)π,

OB2-OC2=m2-n2

AC=m,BC=n(m>n),

AM=m+n,

过O作ODAB于D,

BD=AD=AB=,CD=AC-AD=m-=

由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,

m2-n2=mn,

m2-mn-n2=0,

m=

m>0,n>0,

m=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙P的圆心P(m,n)在抛物线y=上.

(1)写出mn之间的关系式;

(2)当⊙P与两坐标轴都相切时,求出⊙P的半径;

(3)若⊙P的半径是8,且它在x轴上截得的弦MN,满足0≤MN≤2时,求出m、n的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的三边分别为6cm8cm10cm,则这个三角形内切圆的半径是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1、图2,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90°,

(1)在图1中,ACBD相等吗?请说明理由;

(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问ACBD还相等吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线与反比例函数k0)的图象交于点A,且点A的横坐标为1,点Bx轴正半轴上一点,且ABOA

1)求反比例函数的解析式;

2)求点B的坐标;

3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OAOB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB两点的坐标分别为(―2,0,01),⊙C的圆心坐标为(0,―1),半径为1.若D是⊙C上的一个动点,射线ADy轴交于点E,则△ABE面积的最大值是( )

A. 4 B. C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题提出)

“不以规矩,不能成方圆.”——孟子;“圆,一中同长也.”——墨经.

1)圆,一中同长也.”体现了古代先哲对“圆”定义的思考,请用现代文翻译:____

(初步思考)

圆规是我们初中几何学习不可或缺的工具,用圆规不仅可以画圆、画弧,还可以画弧与弧的交点,利用这一特征可以构造很多图形,如:

2)角平分线:如图1只用圆规在∠AOB中画出一点P使得点P在∠AOB的角平分线上;对称点:如图2只用圆规画出点P关于直线l的对称点Q,并说明理由.

(操作与应用)

3)已知点A、直线l.在图3只用圆规在直线l上画出两点BC,使得ABC恰好是等腰三角形的3个顶点,(画出一个并写出相等线段即可):

已知点P、直线l.在图4只用圆规画出一点Q,使得点PQ所在的直线与直线l平行.(提示:平行四边形对边平行).

4)已知点OAB只用圆规画出半径为AB的⊙O与点AB所在直线的交点CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ABC = 90°,BC = 1,AC =

1以点B为旋转中心,将ABC沿逆时针方向旋转90°得到ABC′,请画出变换后的图形;

2求点A和点A′之间的距离

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1y=x-3x轴,y轴分别交于点A和点B

1)求点A和点B的坐标;

2)将直线l1向上平移6个单位后得到直线l2,求直线l2的函数解析式;

3)设直线l2x轴的交点为M,则MAB的面积是______

查看答案和解析>>

同步练习册答案