【题目】丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.
(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;
(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少总费用是多少元?
【答案】(1)y= (2)太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元
【解析】
试题(1)、太阳花的价格=6×数量;绣球花的价格分x≤20和x>20两种情况分别进行计算,得出函数解析式;(2)、首先设太阳花的数量是m盆,则绣球花的数量是(90-m)盆,购买两种花的总费用是w元,根据题意求出m的取值范围,然后得出w与m的函数关系式,然后根据一次函数的增减性得出最小值.
试题解析:(1)、y太阳花=6x;
①y绣球花=10x(x≤20);
②y绣球花=10×20+10×0.8×(x-20)=200+8x-160=8x+40(x>20)
(2)、根据题意, 设太阳花的数量是m盆,则绣球花的数量是(90-m)盆,购买两种花的总费用是w元,
∴m≤(90-m) 则m≤30,
则w=6m+[8(90-m)+40]=760-2m
∵-2<0 ∴w随着m的增大而减小, ∴当m=30时,
w最小=760-2×30=700(元),
即太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.
科目:初中数学 来源: 题型:
【题目】如图所示,在下列条件中,不能作为判断△ABD≌△BAC的条件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个三位数,百位数是,十位数是,个位数是,我们可以记作, 表示,例如,仿照上面的例子,
(1)可以用 表示;
(2)可以用 表示;
(3)欧阳老师给4为同学玩一个数字游戏,先请A同学心里想一个三位数,并把这个三位数在纸上写两遍构成一个六位数交给B同学,如他心里想的是789,那么他在纸上写的就是789789,B把这个六位数除以7,得到的商写在另一张纸上并交给C同学,C同学把B同学给他的数字除以11,得到的商写在另一张纸上并交给D同学,D同学把C同学给他的数字除以13,得到的商写在另一张纸上,并交还给A同学,还给同学的数字和他刚开始想的数字有什么关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形的边长是,,将绕点顺时针旋转,它的两边分别交于点,是延长线上一点,且始终保持.
(1)求证:;
(2)求证:;
(3)当时:
①求的值;②若是的中点,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面方格中有一个四边形ABCD和点O,请在方格中画出以下图形(只要求画出平移、旋转后的图形,不要求写出作图步骤和过程).
(1)画出四边形ABCD以点O为旋转中心,逆时针旋转90°后得到的四边形A1B1C1D1;
(2)画出四边形A1B1C1D1向右平移3格(3个小方格的边长)后得到的四边形A2B2C2D2;
(3)填空:若每个小方格的边长为1,则四边形A1B1C1D1与四边形A2B2C2D2重叠部分的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在长方形中,对角线与交于点O,动点P从点A出发,沿匀速运动,到达点B时停止,设点P所走的路程为x.线段的长为y,若y与x之间的函数图象如图2所示,图象与y轴的交点为E.则E的纵坐标为_______________,则长方形的周长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a,b满足(a﹣3)2+|b﹣6|=0,现同时将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABCD?若存在这样一点,求出点M的坐标,若不存在,试说明理由;
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com