16£®Èçͼ£¬Ö±Ïßy=2x-2·Ö±ðÓëxÖá¡¢yÖáÏཻÓÚM£¬NÁ½µã£¬²¢ÇÒÓëË«ÇúÏßy=$\frac{k}{x}$£¨k£¾0£©ÏཻÓÚA£¬BÁ½µã£¬¹ýµãA×÷AC¡ÍyÖáÓÚµãC£¬¹ýµãB×÷BD¡ÍxÖáÓÚµãD£¬ACÓëBDµÄÑÓ³¤Ïß½»ÓÚµãE£¨m£¬n£©£®
£¨1£©ÇóÖ¤£º$\frac{EC}{EA}$=$\frac{ED}{EB}$£»
£¨2£©Èô$\frac{AM}{BM}$=$\frac{1}{2}$£¬Çó$\frac{k}{x}$£¾2x-2µÄxµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬PΪ˫ÇúÏßÉÏÒ»µã£¬ÒÔOB£¬OPΪÁÚ±ß×÷ƽÐÐËıßÐΣ¬ÇÒƽÐÐËıßÐεÄÖܳ¤×îС£¬ÇóµÚËĸö¶¥µãQµÄ×ø±ê£®

·ÖÎö £¨1£©ÉèA£¨x1£¬$\frac{k}{{x}_{1}}$£©£¬B£¨x2£¬$\frac{k}{{x}_{2}}$£©£¬ÔòÓÐAE=x1-x2£¬BE=$\frac{k}{{x}_{1}}$-$\frac{k}{{x}_{2}}$£¬EC=-x2£¬ED=$\frac{k}{{x}_{1}}$£¬Ê×ÏÈÖ¤Ã÷$\frac{AE}{BE}$=$\frac{EC}{ED}$£¬Óɴ˼´¿É½â¾öÎÊÌ⣮
£¨2£©£©ÓÉDM¡ÎAE£¬µÃ$\frac{DE}{BD}$=$\frac{AM}{BM}$=$\frac{1}{2}$£¬ÉèA£¨m£¬n£©ÔòB£¨-$\frac{m}{2}$£¬-2n£©£¬°ÑA¡¢B´úÈëy=2x-2µÃµ½$\left\{\begin{array}{l}{n=2m-2}\\{-2n=4m-2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=2}\\{n=2}\end{array}\right.$£¬Çó³öA¡¢BÁ½µã×ø±ê¼´¿É½â¾öÎÊÌ⣮
£¨3£©ÒòΪµãBÊǶ¨µã£¬OBÊǶ¨³¤£¬ËùÒÔÒªÇóƽÐÐËıßÐÎOBPQµÄÖܳ¤µÄ×îСֵֻÐèÒªÇó³öOPµÄ×îСֵ¼´¿É£¬ÓÉPÔÚy=$\frac{4}{x}$ÉÏ£¬ÉèP£¨a£¬$\frac{4}{a}$£©£¬ÒòΪOP2=n2+$\frac{16}{{n}^{2}}$=£¨n-$\frac{4}{n}$£©2+8£¬ËùÒÔµ±n-$\frac{4}{n}$=0ʱ£¬OP2µÄÖµ×îС£¬Óɴ˼´¿É½â¾öÎÊÌ⣮

½â´ð £¨1£©Ö¤Ã÷£ºÉèA£¨x1£¬$\frac{k}{{x}_{1}}$£©£¬B£¨x2£¬$\frac{k}{{x}_{2}}$£©£¬ÔòÓÐAE=x1-x2£¬BE=$\frac{k}{{x}_{1}}$-$\frac{k}{{x}_{2}}$£¬EC=-x2£¬ED=$\frac{k}{{x}_{1}}$£¬
¡ß$\frac{AE}{BE}$=$\frac{{x}_{1}-{x}_{2}}{\frac{k}{{x}_{1}}-\frac{k}{{x}_{2}}}$=-$\frac{{x}_{1}{x}_{2}}{k}$£¬$\frac{EC}{ED}$=$\frac{-{x}_{2}}{\frac{k}{{x}_{1}}}$=-$\frac{{x}_{1}{x}_{2}}{k}$£¬
¡à$\frac{AE}{BE}$=$\frac{EC}{ED}$£¬
¡à$\frac{EC}{EA}$=$\frac{ED}{EB}$£®

£¨2£©¡ßDM¡ÎAE£¬
¡à$\frac{DE}{BD}$=$\frac{AM}{BM}$=$\frac{1}{2}$£¬
¡àA£¨m£¬n£©ÔòB£¨-$\frac{m}{2}$£¬-2n£©£¬
°ÑA¡¢B´úÈëy=2x-2µÃµ½$\left\{\begin{array}{l}{n=2m-2}\\{-2n=4m-2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{m=2}\\{n=2}\end{array}\right.$£¬
¡àA£¨2£¬2£©£¬B£¨-1£¬-4£©£¬
ÓÉͼÏó¿ÉÖª£¬$\frac{k}{x}$£¾2x-2ʱ£¬x£¼-1»ò0£¼x£¼2£®

£¨3£©ÓÉ£¨2£©¿ÉÖª·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{4}{x}$£¬A£¨2£¬2£©£¬B£¨1£¬-4£©£¬
¡ßËıßÐÎOBPQÊÇƽÐÐËıßÐΣ¬
¡àOB=PQ£¬PO=BQ£¬
¡ßµãBÊǶ¨µã£¬¡àOBÊǶ¨³¤£¬
¡àÒªÇóƽÐÐËıßÐÎOBPQµÄÖܳ¤µÄ×îСֵֻÐèÒªÇó³öOPµÄ×îСֵ¼´¿É£¬
¡ßPÔÚy=$\frac{4}{x}$ÉÏ£¬ÉèP£¨a£¬$\frac{4}{a}$£©£¬
¡àOP2=n2+$\frac{16}{{n}^{2}}$=£¨n-$\frac{4}{n}$£©2+8£¬
¡àµ±n-$\frac{4}{n}$=0ʱ£¬OP2µÄÖµ×îС£¬
¡àn=¡À2ʱ£¬OPÓÐ×îСֵ£¬
¡àP£¨2£¬2£©»ò£¨-2£¬-2£©£¬Q£¨1£¬-2£©»ò£¨-3£¬-6£©£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌâ¡¢×ø±êÓëͼÏóµÄÐÔÖÊ£®ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ£¬´ý¶¨ÏµÊý·¨ÒÔ¼°Èý½ÇÐÎÃæ»ýµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ð¡ÀîÔÚ½â¹ØÓÚxµÄ·½³Ì5a-x=13ʱ£¬Î󽫡°-x¡±¿´³É¡°+x¡±£¬µÃµ½·½³ÌµÄ½âΪx=-2£¬ÔòÔ­·½³ÌµÄ½âΪx=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô·Öʽ$\frac{1}{5-x}$Óë$\frac{2}{2-3x}$µÄÖµ»¥ÎªÏà·´Êý£¬Ôòx=2.4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®·ÖÀàÌÖÂÛ
ÒÑÖª£¨x-1£©x+6=1£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®¡°ÉϺ£µÏÊ¿ÄáÀÖÔ°¡±½«ÓÚ2016Äê6ÔÂ16ÈÕ¿ªÃÅÓ­¿Í£¬Ð¡Ã÷×¼±¸ÀûÓÃÊî¼Ù´Ó¾àÉϺ£2160ǧÃ×µÄijµØÈ¥¡°ÉϺ£µÏÊ¿ÄáÀÖÔ°¡±²Î¹ÛÓÎÀÀ£¬ÏÂͼÊÇËûÔÚ»ð³µÕ¾×ÉѯµÃµ½µÄÐÅÏ¢£º

¸ù¾ÝÉÏÊöÐÅÏ¢£¬ÇóСÃ÷³Ë×ø³Ç¼ÊÖ±´ï¶¯³µµ½ÉϺ£ËùÐèµÄʱ¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¸øÏÂÃæÃüÌâµÄ˵Àí¹ý³ÌÌîдÒÀ¾Ý£®
ÒÑÖª£ºÈçͼ£¬Ö±ÏßAB£¬CDÏཻÓÚµãO£¬EO¡ÍCD£¬´¹×ãΪO£¬OFƽ·Ö¡ÏBOD£¬¶Ô¡ÏEOF=$\frac{1}{2}$¡ÏBOC˵Ã÷ÀíÓÉ£®
ÀíÓÉ£ºÒòΪ¡ÏAOC=¡ÏBOD£¨¶Ô¶¥½ÇÏàµÈ£©£¬
¡ÏBOF=$\frac{1}{2}$¡ÏBOD£¨½Çƽ·ÖÏߵĶ¨Ò壩£¬
     ËùÒÔ¡ÏBOF=$\frac{1}{2}$¡ÏAOC£¨µÈÁ¿´ú»»£©
     ÒòΪ¡ÏAOC=180¡ã-¡ÏBOC£¨Æ½½ÇµÃµÄ¶¨Ò壩£¬
     ËùÒÔ¡ÏBOF=90¡ã-$\frac{1}{2}$¡ÏBOC£®
     ÒòΪEO¡ÍCD£¨ÒÑÖª£©£¬
    ËùÒÔ¡ÏCOE=90¡ã£¨´¹Ö±µÄ¶¨Ò壩
     ÒòΪ¡ÏBOE+¡ÏCOE=¡ÏBOC£¨Á½½ÇºÍµÄ¶¨Ò壩£¬
    ËùÒÔ¡ÏBOE=¡ÏBOC-¡ÏCOE£®
    ËùÒÔ¡ÏBOE=¡ÏBOC-90¡ã£¨µÈÁ¿´ú»»£©
    ÒòΪ¡ÏEOF=¡ÏBOE+¡ÏBOF£¨Á½½ÇºÍµÄ¶¨Ò壩
    ËùÒÔ¡ÏEOF=£¨¡ÏBOC-90¡ã£©+£¨90¡ã-$\frac{1}{2}$¡ÏBOC£©£¨µÈÁ¿´ú»»£©
    ËùÒÔ¡ÏEOF=$\frac{1}{2}$¡ÏBOC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èç¹ûÔ²»·ÖдóÔ²µÄ°ë¾¶Îªr£¬Ð¡Ô²µÄ°ë¾¶Îª$\frac{r}{2}$£¬ÔòÔ²»·µÄÃæ»ýÊÇ$\frac{3}{4}$¦Ðr2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®£¨1£©ÒÑÖª¡ÑOµÄ°ë¾¶Îª5£¬PΪ¡ÑOÄÚÒ»µã£¬ÇÒOP=3£»¹ýµãPµÄÏÒ³¤ÊÇÕûÊýµÄÏÒÓÐ4Ìõ£»
£¨2£©Èçͼ¡ÑOµÄÖ±¾¶ÊÇ10£¬ÏÒAB=6£¬PÊÇABÉÏÒ»¶¯µã£¬ÔòOPµÄÈ¡Öµ·¶Î§ÊÇ4¡ÜOP¡Ü5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬µãA×ø±êΪ£¨4£¬0£©£¬µãPÔÚµÚÒ»ÏóÏÞÇÒÔÚÖ±Ïßy=-x+5ÉÏ£®
£¨1£©ÉèµãP×ø±êΪ£¨x£¬y£©£¬Ð´³ö¡÷OPAµÄÃæ»ýSÓëxÖ®¼äµÄ¹Øϵʽ£¨ÆäÖеãPºá×ø±êÔÚOÓëAµãÖ®¼ä±ä»¯£©£»
£¨2£©µ±S=12ʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Èô¡÷OPAÊÇÖ±½ÇÈý½ÇÐΣ¬ÇóPµã×ø±ê£¬²¢ÇóÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸