精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB= ,BP=6,AP=1,求QC的长.

【答案】
(1)解:CD与⊙O相切.理由如下:

连结OC,如图,

∵OC=OB,

∴∠2=∠B,

∵DQ=DC,

∴∠1=∠Q,

∵QP⊥PB,

∴∠BPQ=90°,

∴∠Q+∠B=90°,

∴∠1+∠2=90°,

∴∠DCO=180°﹣∠1﹣∠2=90°,

∴OC⊥CD,

而OC为⊙O的半径,

∴CD为⊙O的切线;


(2)解:连接AC,如图,

∵AB为⊙O的直径,

∴∠ACB=90°,

在Rt△ABC中,cosB= = =

而BP=6,AP=1,

∴BC=

在Rt△BPQ中,cosB= =

∴BQ= =10,

∴QC=BQ﹣BC=10﹣ =


【解析】(1)连结OC,由OC=OB得∠2=∠B,DQ=DC得∠1=∠Q,根据QP⊥PB得到∠Q+∠B=90°,则∠1+∠2=90°,再利用平角的定义得到∠DCO=90°,然后根据切线的判定定理得到CD为⊙O的切线;(2)连结AC,由AB为⊙O的直径得∠ACB=90°,根据余弦的定义得cosB= = = ,可计算出BC= ,在Rt△BPQ中,利用余弦的定义得cosB= = ,可计算出BQ=10,然后利用QC=BQ﹣BC进行计算即可.
【考点精析】关于本题考查的切线的判定定理和解直角三角形,需要了解切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.
(1)求证:四边形BMNP是平行四边形;
(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.

(1)求一次函数y=kx+b的解析式;
(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;
(3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):

(1)填写如表:

正方形ABCD内点的个数

1

2

3

4

n

分割成的三角形的个数

4

6


(2)如果原正方形被分割成2016个三角形,此时正方形ABCD内部有多少个点?
(3)上述条件下,正方形又能否被分割成2017个三角形?若能,此时正方形ABCD内部有多少个点?若不能,请说明理由.
(4)综上结论,你有什么发现?(写出一条即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是(
A.AB=AD
B.AC=BD
C.AD=BC
D.AB=CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4 且∠AFG=60°,GE=2BG,则折痕EF的长为(
A.1
B.
C.2
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB= CD,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2 ,则∠A=(
A.120°
B.100°
C.60°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y=ax2+bx+c(a≠0)的图象与x轴相交于A、B两点,頂点为点M.則下列说法不正确的是(
A.a<0
B.当x=﹣1时,函数y有最小值4
C.对称轴是直线=﹣1
D.点B的坐标为(﹣3,0)

查看答案和解析>>

同步练习册答案