精英家教网 > 初中数学 > 题目详情
(1)△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图①根据勾股定理,则a2+b2=c2,若△ABC不是直角三角形,如图②和图③,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.

(2)利用(1)的结论解答如下问题:
锐角△ABC中,两边a=1,b=3,求第三边的变化范围.
分析:(1)图②中,△ABC是锐角三角形,过点A作AD⊥BC,垂足为D,设CD为x,根据AD不变由勾股定理得出等式b2-x2=AD2=c2-(a-x)2,化简得出a2+b2>c2;图③中,△ABC是钝角三角形,过B作BD⊥AC,交AC的延长线于D.设CD为x,根据勾股定理,得(b+x)2+a2-x2=c2.化简得出a2+b2<c2
(2)利用(1)的结论a2+b2>c2以及三角形三边关系定理即可求解.
解答:解:(1)若△ABC是锐角三角形,则有a2+b2>c2;若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2.理由如下:
当△ABC是锐角三角形时,如图②,
过点A作AD⊥BC,垂足为D,设CD为x,则有BD=a-x,
根据勾股定理,得b2-x2=AD2=c2-(a-x)2
即b2-x2=c2-a2+2ax-x2
∴a2+b2=c2+2ax,
∵a>0,x>0,
∴2ax>0.
∴a2+b2>c2
当△ABC是钝角三角形时,如图③,
过B作BD⊥AC,交AC的延长线于D.
设CD为x,则有BD2=a2-x2(7分)
根据勾股定理,得(b+x)2+a2-x2=c2
即a2+b2+2bx=c2.(9分)
∵b>0,x>0,
∴2bx>0,
∴a2+b2<c2

(2)由(1)知,若△ABC是锐角三角形,有a2+b2>c2
∵a=1,b=3,
∴c<
a2+b2
=
10
,c>
b2-a2
=2
2

∴2
2
<c<
10
点评:本题考查了勾股定理的运用.通过作辅助线构造直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,DE∥BC,DE与AB相交于D,与AC相交于E,若AC=8,EC=3,DB=4,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,则a+c=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=2,AB=3,D是AC上一点,E是AB上一点,且∠ADE=∠B,设AD=x,AE=y,则y与x之间的函数关系式是(  )
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=8,AC=6,BC=7,点D在AC上,AD=2,
(1)过点D画直线,使它截△ABC的两边所得的小三角形与△ABC相似(图形备用,标出与∠B相等的角);
(2)若截线与AB交于E,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、在△ABC中,AB=3,BC=8,则AC的取值范围是
5<AC<11

查看答案和解析>>

同步练习册答案