精英家教网 > 初中数学 > 题目详情

【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC= CD.
简单应用:

(1)在图①中,若AC= ,BC=2 ,则CD=
(2)如图③,AB是⊙O的直径,点C、D在⊙上, = ,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是

【答案】
(1)3
(2)

解:连接AC、BD、AD,

∵AB是⊙O的直径,

∴∠ADB=∠ACB=90°,

∴AD=BD,

将△BCD绕点D,逆时针旋转90°到△AED处,如图③

∴∠EAD=∠DBC,

∵∠DBC+∠DAC=180°,

∴∠EAD+∠DAC=180°,

∴E、A、C三点共线,

∵AB=13,BC=12,

∴由勾股定理可求得:AC=5,

∵BC=AE,

∴CE=AE+AC=17,

∵∠EDA=∠CDB,

∴∠EDA+∠ADC=∠CDB+∠ADC,

即∠EDC=∠ADB=90°,

∵CD=ED,

∴△EDC是等腰直角三角形,

∴CE= CD,

∴CD=


(3)

解:以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④

由(2)的证明过程可知:AC+BC= D1C,

∴D1C=

又∵D1D是⊙O的直径,

∴∠DCD1=90°,

∵AC=m,BC=n,

∴由勾股定理可求得:AB2=m2+n2

∴D1D2=AB2=m2+n2

∵D1C2+CD2=D1D2

∴CD=m2+n2 =

∵m<n,

∴CD=


(4)[ "解:当点E在直线AC的左侧时,如图⑤

连接CQ,PC,
∵AC=BC,∠ACB=90°,
点P是AB的中点,
∴AP=CP,∠APC=90°,
又∵CA=CE,点Q是AE的中点,
∴∠CQA=90°,
设AC=a,
∵AE= AC,
∴AE= a,
∴AQ= AE=
由勾股定理可求得:CQ= a,
由(2)的证明过程可知:AQ+CQ= PQ,
PQ= a+ a,
PQ= AC;
当点E在直线AC的右侧时,如图⑥
【解析】解:(1)由题意知:AC+BC= CD,
∴3 +2 = CD,
∴CD=3,;
(1)由题意可知:AC+BC= CD,所以将AC与BC的长度代入即可得出CD的长度;(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1 , 由(2)问题可知:AC+BC= CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度;(4)根据题意可知:点E的位置有两种,分别是当点E在直线AC的右侧和当点E在直线AC的左侧时,连接CQ、CP后,利用(2)和(3)问的结论进行解答.本题考查圆的综合问题,每一问都紧扣着前一问的结论,涉及勾股定理、圆周角定理,旋转的性质等知识,解题的关键是就利用好已证明的结论来进行解答,考查学生综合运用知识的能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)求证:BP=DP;
(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD∥CB,∠1=∠2,∠BAE=∠DCF。试说明:

(1)AE∥CF;
(2)AB∥CD。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为4的正方形ABCD内接于点O,点E是 上的一动点(不与A、B重合),点F是 上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论,其中正确的个数是( ). ① = ②△OGH是等腰三角形; ③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+ .


A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,⊙M与x轴相切于原点,平行于y轴的直线交圆于P,Q两点,P点在Q点的下方,若P点坐标是(2,1),则圆心M的坐标是(  )

A.(0,3)
B.(0,2)
C.(0,
D.(0,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在A地往北60m的B处有一幢房,西80m的C处有一变电设施,在BC的中点D处有古建筑.因施工需要在A处进行一次爆破,为使房、变电设施、古建筑都不遭到破坏,问爆破影响面的半径应控制在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.

(1)求证:BD=CD;
(2)若圆O的半径为3,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是 . (写出正确命题的序号)

查看答案和解析>>

同步练习册答案