精英家教网 > 初中数学 > 题目详情
过点(3,-5)的反比例函数的图象应在(  )
分析:先求出过点(3,-5)的反比例函数解析式,再根据反比例函数的性质判断出此函数图象所在象限即可.
解答:解:∵设过点(3,-5)的反比例函数解析式为y=
k
x
(k≠0),
∴-5=
k
3
,即k=-15<0,
∴此函数的图象在二、四象限.
故选B.
点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求
1s
的最大值.

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(45):6.4 二次函数的应用(解析版) 题型:解答题

已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求的最大值.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(42):2.4 二次函数的应用(解析版) 题型:解答题

已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求的最大值.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(41):23.5 二次函数的应用(解析版) 题型:解答题

已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求的最大值.

查看答案和解析>>

科目:初中数学 来源:2006年福建省厦门市中考数学试卷(课标A卷)(解析版) 题型:解答题

(2006•厦门)已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求的最大值.

查看答案和解析>>

同步练习册答案