精英家教网 > 初中数学 > 题目详情
20.下列计算正确的是(  )
A.(a-b)2=a2-b2B.(2a+b)(-2a+b)=2a2-b2
C.(a+1)(a-2)=a2-2D.(-a-b)2=a2+2ab+b2

分析 根据整式的运算法则即可求出答案.

解答 解:(A)原式=a2-2ab+b2,故A错误;
(B)原式=b2-4a2,故B错误;
(C)原式=a2-a-2,故C错误;
故选(D)

点评 本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.若2015-$\sqrt{(x-2015)^{2}}$=x,则x的取值范围是x≤2015.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知顶点为A(2,-1)的抛物线与y轴交于点B,与x轴交于C、D两点,点C坐标(1,0);
(1)求这条抛物线的表达式;
(2)连接AB、BD、DA,求cos∠ABD的大小;
(3)点P在x轴正半轴上位于点D的右侧,如果∠APB=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距A地18千米的B地,他们离开A地的距离S(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据题目和图象所提供的信息,下列说法正确的是(  )
A.乙比甲先到达B地B.乙在行驶过程中没有追上甲
C.乙比甲早出发半小时D.甲的行驶速度比乙的行驶速度快

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一个宽度相同的纸条,按如图所示的方法折叠一下,则∠1=115°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在实数3.14159,$\root{3}{64}$,1.010010001…,$\frac{2}{3}$,π,0中,无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.平面直角坐标系中,若平移二次函数y=(x-6)(x-7)-3的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为(  )
A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.定义:当点C在线段AB上,AC=nAB时,我们称n为点C在线段AB上的点值,记作dC-AB=n.如点C是AB的中点时,即AC=$\frac{1}{2}$AB,则dC-AB=$\frac{1}{2}$;反过来,当dC-AB=$\frac{1}{2}$时,则有AC=$\frac{1}{2}$AB.
(1)如图1,点C在线段AB上,若dC-AB=$\frac{2}{3}$,则$\frac{AC}{AB}$=$\frac{2}{3}$;若AC=3BC,则dC-AB=$\frac{3}{4}$;
(2)如图2,在△ABC中,∠ACB=90°,CD⊥AB于点D,AB=10cm,BC=6cm,点P、Q分别从点C和点B同时出发,点P沿线段CA以2cm/s的速度向点A运动,点Q沿线段BC以1cm/s的速度向点C运动,当点P到达点A时,点P、Q均停止运动,连接PQ交CD于点E,设运动时间为ts,dP-CA+dQ-CB=m.
①当$\frac{5}{4}$≤m≤$\frac{4}{3}$时,求t的取值范围;
②当dP-CA=$\frac{m}{2}$,求dE-CD的值;
③当dE-CD=$\frac{m}{2}$时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知二次函数y=ax2+bx+c的图象经过A(3,0),B(0,1),C(2,2)三点.
(1)求二次函数y=ax2+bx+c的解析式;
(2)设点D($\frac{6}{5}$,m)在二次函数的图象上,将∠ACB绕点C按顺时针方向旋转至∠FCE,使得射线CE与y轴的正半轴交于点E,且经过点D,射线CF与线段OA交于点F.求证:BE=2FO;
(3)是否存在点H(n,2),使得点A、D、H构成的△ADH是直角三角形?若存在,有几个符合条件的点H?(直接回答,不必说明理由)

查看答案和解析>>

同步练习册答案