精英家教网 > 初中数学 > 题目详情
如图,已知△ABC内接于⊙O,过A作⊙O的切线,与BC的延长线交于D,且AD=
3
+1
,CD精英家教网=2,∠ADC=30°
(1)AC与BC的长;
(2)求∠ABC的度数;
(3)求弓形AmC的面积.
分析:(1)作CE⊥AD于E,则CE=1,利用角边关系又可求出AE,AC,BC的长;
(2)利用三角形的内角和是180度,可求出∠ABC的度数;
(3)仔细观察图形可得S弓形AmC=S扇形OAmC-S△AOC,然后利用面积公式进行计算.
解答:精英家教网解:(1)作CE⊥AD于E,
∴CE=1,DE=
3

又∵AD=
3
+1,
∴AE=1,AC=
2

∴∠ABC=45°,
又∵AD2=CD•BD,
∴BC=
3


(2)∵∠ADC=30°,
∴∠ECD=60°,
∴∠AFD=60°,
∴∠ABC=30°;

(3)S弓形AmC=S扇形OAmC-S△AOC=
1
4
π-
1
2

∴AC=
2
,BC=
3
,∠ABC=45°,
∴S弓形AmC=
1
4
π-
1
2
点评:本题综合考查了解直角三角形,及扇形的三角形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O的切线与AC的延长线交于点E.
(1)求证:BC∥DE;
(2)若AB=3,BD=2,求CE的长;
(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•樊城区模拟)如图,已知△ABC内接于⊙O,弦AD交BC于E,过点D的切线MN交直线AB于M,交直线AC于N.
(1)求证:AE•DE=BE•CE;
(2)连接DB,CD,若MN∥BC,试探究BD与CD的数量关系;
(3)在(2)的条件下,已知AB=6,AN=15,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.
求证:∠OAE=∠EAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AB=AC,∠A=36°,CD是⊙O的直径,求∠ACD的度数.

查看答案和解析>>

同步练习册答案