精英家教网 > 初中数学 > 题目详情

  

如图,因为∠1=∠2(已知)

所以 AD∥BC(  ),

因为 ∠3=∠4(已知)

所以 AB∥DC(  );

答案:内错角相等,两直线平行
解析:

内错角相等,两直线平行


练习册系列答案
相关习题

科目:初中数学 来源:初中几何同步单元练习册 第1册 题型:022

  

如图,因为∠1=∠2(已知)

所以 AD∥BC(  ),

因为 ∠3=∠4(已知)

所以 AB∥DC(  );

查看答案和解析>>

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:013

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

科目:初中数学 来源:初中几何同步单元练习册 第1册 题型:022

  如图,已知:∠1=∠3,

  求证:AB∥CD.

  证明:因为  ∠1=∠3(已知),∠2=∠3(  ),

  所以  ∠1=∠2(  ),

  所以  AB∥CD(  ).

查看答案和解析>>

科目:初中数学 来源:初中几何同步单元练习册 第1册 题型:022

  如图,已知:AB∥CD,∠AEF=

  求:∠NFD的度数.

  解:因为  AB∥CD(  ),

  所以  ∠AEF+∠CFE=(  ),

  因为  ∠AEF=(  ),

  所以  ∠CFE=-∠AEF=

  因为  ∠CFE=∠NFD(  ),

  所以  ∠NFD=

查看答案和解析>>

同步练习册答案