精英家教网 > 初中数学 > 题目详情

【题目】如图,平分,过点,连接,若,求的长.

【答案】BD=DN=

【解析】

由平行线的性质可证∠MBD=BDC,即可证AM=MD=MB=4,由BD2=ADCD可得BD长,再由勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求DN的长.

解:∵BMCD
∴∠MBD=BDC
∴∠ADB=MBD,且∠ABD=90°
BM=MD,∠MAB=MBA
BM=MD=AM=4

平分

∴∠ADB=CDB

∴△ABD∽△BCD
BD2=ADCD

CD=6AD=8
BD2=48

BD=
BC2=BD2-CD2=12
MC2=MB2+BC2=28
MC=

BMCD
∴△MNB∽△CND

,且BD=

∴设DN=x

则有

解得x=

DN=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.

学生选修课程统计表

课程

人数

所占百分比

声乐

14

舞蹈

8

书法

16

摄影

合计

根据以上信息,解答下列问题:

1    

2)求出的值并补全条形统计图.

3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.

4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数和一次函数

(1)当t=0时,试判断二次函数的图象与x轴是否有公共点,如果有,请写出公共点的坐标;

(2)若二次函数的图象与x轴的两个不同公共点,且这两个公共点间的距离为8,求t的值;

(3)求证:不论实数t取何值,总存在实数x,使

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为1的正方形纸片ABCD折叠,使点B的对应点M落在边CD上(不与点CD重合),折痕为EFAB的对应线段MGAD于点N.以下结论正确的有(  )①∠MBN45°;②MDN的周长是定值;③MDN的面积是定值.

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A顺时针旋转θ0°≤θ≤360°),得到矩形AEFG

1)当点EBD上时,求证:AFBD

2)当GCGB时,求θ

3)当AB10BGBC13时,求点G到直线CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线相交于两点,且抛物线经过点

1)求抛物线的解析式.

2)点是抛物线上的一个动点(不与点重合),过点作直线轴于点,交直线于点.当时,求点坐标;

3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,直线ykx2kk0)的与y轴交于点A,与x轴交于点B

1)如图1,求点B的坐标;

2)如图2,第一象限内的点C在经过B点的直线y-x+b上,CDy轴于点D,连接BD,若SABD2k+2,求C点的坐标(用含k的式子表示);

3)如图3,在(2)的条件下,连接OC,交直线AB于点E,若3ABD﹣∠BCO45°,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中.直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A,连结AC,A(-1,0)

(1)求抛物线的解析式;

(2)点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;

(3)若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙M的半径为4,圆心M的坐标为(68),点P是⊙M上的任意一点,PAPB,且PAPBx轴分别交于AB两点,若点A、点B关于原点O对称,则AB的最小值为____

查看答案和解析>>

同步练习册答案