【题目】已知A(0,2),B(4,0).
(1)如图1,连接AB,若D(0,﹣6),DE⊥AB于点E,B、C关于y轴对称,M是线段DE上的一点,且DM=AB,连接AM,试判断线段AC与AM之间的位置和数量关系,并证明你的结论;
(2)如图2,在(1)的条件下,若N是线段DM上的一个动点,P是MA延长线上的一点,且DN=AP,连接PN交y轴于点Q,过点N作NH⊥y轴于点H,当N点在线段DM上运动时,△MQH的面积是否为定值?若是,请求出这个值;若不是,请说明理由.
【答案】
(1)
解:结论:AC=AM,AC⊥AM.理由如下:
∵A(0,2),B(4,0)D(0,﹣6),
∴OA=2,OD=6,OB=4,
∵AD=OA+OD=8,BC=2OB=8,
∴AD=BC,
在△CAB与△AMD中,
,
∴△CAB≌△AMD,
∴AC=AM,∠ACO=∠MAD,
∵∠ACO+∠CAO=90°,
∴∠MAD+∠CAO=∠MAC=90°,
∴AC=AM,AC⊥AM
(2)
解:是定值,定值为4.理由如下:
如图3
过P作PG⊥y轴于G,
在△PAG与△HND中,
,
∴△PAG≌△HND,
∴PG=HN,AG=HD,
∴AD=GH=8,
在△PQG与△NHQ中,
,
∴△PQG≌△NHQ,
∴QG=QH= GH=4,
∴S△MQH= ×4×2=4.
【解析】(1)结论:AC=AM,AC⊥AM.由已知条件得到AD=BC,推出△CAB≌△AMD,根据全等三角形的性质得到AC=AM,∠ACO=∠MAD,由于∠ACO+∠CAO=90°,得到∠MAD+∠CAO=∠MAC=90°即可得到结论;(2)过P作PG⊥y轴于G,证得△PAG≌△HND,根据全等三角形的性质得到PG=HN,AG=HD,证得△PQG≌△NHQ,得到QG=QH= GH=4即可得到结论.
科目:初中数学 来源: 题型:
【题目】如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.
(1)如果点Q的速度为每秒2个单位,①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);
②求t为何值时,PQ∥OC?
(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含t的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的t的值和P、Q的坐标;如不可能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.
已知:如图,四边形ABCD是平行四边形.
求证:AB=CD,
(1)补全求证部分;
(2)请你写出证明过程.
证明: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com