精英家教网 > 初中数学 > 题目详情

【题目】如图,数轴上有 A、B 两点,所表示的有理数分别为 ab,已知 AB=12,原点 O 是线段AB 上的一点,且 OA=2OB.

1ab

2若动点 PQ 分别从 AB 同时出发,向右运动,点 P 的速度为每秒 2 个单位长度,点 Q 的速度为每秒 1 个单位长度,设运动时间为 t 秒,当点 P 与点 Q 重合时,PQ 两点停止运动.

①当 t 为何值时,2OPOQ=4

②当点 P 到达点 O 时,动点 M 从点 O 出发,以每秒 3 个单位长度的速度也向右运动,当点 M 追上点 Q 后立即返回,以同样的速度向点 P 运动,遇到点 P 后再立即返回,以同样的速度向点 Q 运动,如此往返,直到点 PQ 停止时,点 M 也停止运动,求在此过程中点 M 行驶的总路程,并直接写出点 M 最后位置在数轴上所对应的有理数.

【答案】1a=-8b=4;(2)①当 t1.6 秒或 8 秒时,2OPOQ=4;②点 M 行驶的总路程为 24 和点 M 最后位置在数轴上对应的实数为16

【解析】

1)由AO=2OB可知12平均分成三份AO占两份为8OB占一份为4由图可知A在原点的左边B在原点的右边从而得出结论

2①分两种情况P在原点的左侧和右侧时OP表示的代数式不同OQ=4+t分别代入2OPOQ=4列式即可求出t的值

②点M运动的时间就是点P从点O开始到追到点Q的时间设点M运动的时间为t列式为t21)=8解出即可解决问题

1AB=12AO=2OBAO=8OB=4A点所表示的实数为﹣8B点所表示的实数为4a=﹣8b=4

故答案为:84

2①当0t4如图3AP=2tOP=82tBQ=tOQ=4+t

2OPOQ=4282t)﹣(4+t)=4t==1.6

当点P与点Q重合时如图42t=12+tt=12;

4t12如图5OP=2t8OQ=4+t22t8)﹣(4+t)=4t=8

综上所述t1.6秒或8秒时2OPOQ=4

②当点P到达点O8÷2=4此时OQ=4+t=8即点Q所表示的实数为8如图6设点M运动的时间为t由题意得2tt=8t=8此时P表示的实数为8×2=16所以点M表示的实数也是16∴点M行驶的总路程为3×8=24

M行驶的总路程为24和点M最后位置在数轴上对应的实数为16

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.

(1)若AE=CF;
①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).

(1)求抛物线的解析式:
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM周长最短?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分钟)之间的函数关系如图所示.根据图象信息给出下列说法:①每分钟进水5升;②当4≤x≤12时,容器中的水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开,则需要24分钟可以将容器灌满.其中正确的有________(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某个体经营户销售同一型号的A、B两种品牌的服装,平均每月共销售60件,已知两种品牌的成本和利润如表所示,设平均每月的利润为y元,每月销售A品牌x件.
(1)写出y关于x的函数关系式.
(2)如果每月投入的成本不超过6500元,所获利润不少于2920元,不考虑其他因素,那么销售方案有哪几种?
(3)在(2)的条件下要使平均每月利润率最大,请直接写出A、B两种品牌的服装各销售多少件?

A

B

成本(元/件)

120

85

利润(元/件)

60

30

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DE⊥DF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列一元一次方程解应用题:

某管道由甲、乙两工程队单独施工分别需要30天、20.

(1)如果两队从管道两端同时施工,需要多少天完工?

(2)又知甲队单独施工每天需付200元施工费,乙队单独施工每天需付280元施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工?请你按照少花钱多办事的原则,设计一个方案,并通过计算说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读理解)

A,B,C为数轴上三点,若点CA的距离是点CB的距离的2倍,我们就称点C是(A,B)的优点.

例如,如图,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.

(知识运用)

如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.

(1)数   所表示的点是(M,N)的优点;

(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、AB中恰有一个点为其余两点的优点?

查看答案和解析>>

同步练习册答案