.(12分)如图1:⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取一点D,分别作直线CD、ED交直线AB于点F、M。
(1)求∠COA和∠FDM的度数;(3分)
(2)求证:△FDM∽△COM;(4分)
(3)如图2:若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否仍有△FDM∽△COM?证明你的结论。(5分)
(1)∵AB为直径,CE⊥AB
∴=,CG=EG
在Rt△COG中,
∵OG=OC
∴∠OCG=300,∠COA=600
又∵∠CDE的度数
=弧CAE的度数
=的度数
=∠COA的度数=600
∴∠FDM=1800-∠CDE=1200
(2)证明:
∵∠COM=1800-∠COA=1200
∴∠COM=∠FDM
在Rt△CGM和Rt△EGM中
∵ ∴Rt△CGM≌Rt△EGM ∴∠GMC=∠GME
又∠DMF=∠GME ∴∠OMC=∠DMF ∴△FDM∽△COM
(3)解:结论仍成立。
∵∠FDM=1800-∠CDE
∴∠CDE的度数=弧CAE的度数=的度数=∠COA的度数
∴∠FDM=1800-∠COA=∠COM
∵AB为直径,CE⊥AB; ∴在Rt△CGM和Rt△EGM中
∵
∴Rt△CGM≌Rt△EGM
∴∠GMC=∠GME
∴△FDM∽△COM
解析:略
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012-2013学年浙江省杭州市九年级12月月考数学试卷(解析版) 题型:解答题
(本题12分)如图,二次函数的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连结BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;
(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△相似,求出点Q的坐标;
(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△外接圆圆心的坐标.
查看答案和解析>>
科目:初中数学 来源:2011-2012年浙江省九年级12月月考数学卷 题型:解答题
(本题12分)如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且.
1.(1)求抛物线的对称轴;
2.(2)写出A,B,C三点的坐标(A,B,C三点的坐标只需写出答案),并求抛物线的解析式;
3.(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(广东佛山卷)数学 题型:解答题
(2011内蒙古赤峰,22, 12分)如图,等圆⊙和⊙相交于A、B两点,⊙
(1)求证:BM是⊙的切线;
(2)求的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com