精英家教网 > 初中数学 > 题目详情
二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)当x为何值时,y>0;y<0?
(3)写出y随x的增大而减小的自变量x的取值范围.
(1)由图形可得:x1=1,x2=3;
(2)结合图形可得:1<x<3时y>0;x<1或x>3时y<0;
(3)根据图形可得当x≥2时,y随x的增大而减小.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=mx2-(m-5)x-5(m>0)与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=6.
(1)求抛物线和直线BC的解析式;
(2)在给定的直角坐标系中,画出抛物线和直线BC;
(3)若⊙P过A、B、C三点,求⊙P的半径;
(4)抛物线上是否存在点M,过点M作MN⊥x轴于点N,使△MBN被直线BC分成面积比为1:3的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,抛物线y=ax2+2x经过点A(4,0),顶点为B.
(1)求顶点B的坐标;
(2)将这条抛物线向左平移后与y轴相交于点C,此时点A移动到点D的位置,且∠DBA=∠CBO,求平移后抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-
1
100
(x-60)2+41
(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-
99
100
(100-x)2+
294
5
(100-x)+160
(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的值恒为正,则a,b,c应满足(  )
A.a>0,b2-4ac>0B.a>0,b2-4ac<0
C.a<0,b2-4ac>0D.a<0,b2-4ac<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:抛物线y=-x2-2(m-1)x+m+1与x轴交于a(-1,0),b(3,0),则m为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知函数y=-x2+2x+c的部分图象如图所示,
(1)写出抛物线与x轴的另外一个交点坐标并求c值;
(2)观察图象直接写出不等式-x2+2x+c>0的解集.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c-3=0的根的情况(  )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.以上答案均不对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知直线y=x与二次函数y=ax2-2x-1的图象的一个交点M的横坐标为1,则a的值为(  )
A.2B.1C.3D.4

查看答案和解析>>

同步练习册答案