精英家教网 > 初中数学 > 题目详情
24、如图,由4个全等的正方形组成“L”型图案,请你在图案中仅改变1个正方形的位置,使它变成轴对称图形,画出改变后的图形.
分析:将最上面的小正方形补到右边即可.
解答:解:所作图形如下所示:
点评:本题主要考查了轴对称图形的定义,正确理解轴对称图形的定义是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到
1
次平移,
2
次旋转.小明发现△B∽△A,其相似比为
2:1
.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有
121
个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是
正三边形、正六边形

(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

26、阅读:
我们约定,若一个三角形(记为△M1)是由另一个三角形(记为△M)通过一次平移得到的,称为△M经过T变换得到△M1,若一个三角形(记为△M2)是由另一个三角形(记为△M)通过绕其任一边中点旋转180°得到的,称为△M经过R变换得到△M2.以下所有操作中每一个三角形只可进行一次变换,且变换均是从图中的基本三角形△A开始的,通过变换形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
操作:
(1)如图,由△A经过R变换得到△A1,又由△A1经过
R
变换得到△A2,再由△A2经过
T
变换得到△A3,形成了一个大三角形,记作△B.
(2)在下图的基础上继续变换下去得到△C,若△C的一条边上恰有3个基本三角形(指有一条边在该边上的基本三角形),则△C含有
9
个基本三角形;若△C的一条边上恰有11个基本三角形,则△C含有
121
个基本三角形;
应用:
(3)若△A是正三角形,你认为通过以上两种变换可以得到的正多边形是
正六边形,正三角形

(4)请你用两次R变换和一次T变换构成一个四边形,画出示意图,并仿照下图作出标记.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B,其相似比为
1:2
.在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有
121
个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是
正三角形或正六边形

(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.

查看答案和解析>>

科目:初中数学 来源:黄冈难点课课练  八年级数学上册 题型:022

如图,正△ABC是由4个全等的正三角形构成的,则△ADE由△BDF绕________点旋转________得到.

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 沪科九年级版 2009-2010学年 第26期 总第182期 沪科版 题型:022

下图是上、下底面为全等的正六边形的礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两个全等的矩形.如果用彩色胶带如图包扎礼盒,所需胶带长度至少为________cm(精确到0.1 cm)

查看答案和解析>>

同步练习册答案