精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿A精英家教网C运动,点Q沿AB,BC运动,两点同时到达点C.
(1)点Q的速度是点P速度的多少倍?
(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,
(3)求出y的最大值.
分析:(1)由于在△ABC中,∠A=90°,∠C=30°,AB=1,由此可以利用勾股定理求出BC,AC的长度,又两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C,利用这个条件即可求解;
(2)有两种情况:①当Q在AB上,利用(1)的结论和三角形的面积公式即可求解;②当Q在BC上,利用(1)的结论求出BQ,CQ的长度,也就可以求出Q到AB的距离,再利用三角形的面积公式即可求解;
(3)利用(2)的结论和二次函数的性质即可求解.
解答:解:(1)∵在△ABC中,∠A=90°,∠C=30°,AB=1,
∴BC=2,AC=
3

而两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C
∴Q的速度是P的速度的(2+1)÷
3
=
3
倍;
 
(2)∵设AP=x,△APQ的面积是y,
①当Q在AB上,
精英家教网
0<x≤
3
3
时,y=
3
2
x2

②当Q在BC上,
精英家教网
3
3
≤x≤3
时,y=
1
2
1
2
(3-
3
x)

即:y=-
3
4
x2+
3
4
x


(3)对于y=
3
2
x2
0<x≤
3
3

x=
3
3
时,y最大=
3
6

对于y=-
3
4
x2+
3
4
x
( 
3
3
≤x≤
3

x=
3
2
时,y最大=
3
3
16

3
3
16
3
6

∴当x=
3
2
时,y最大=
3
3
16
点评:此题这样考查了二次函数的最值和勾股定理的应用,解题时首先利用勾股定理求出相关线段的长度,然后利用几何图形的性质求出函数解析式,最后利用函数的最值即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案