精英家教网 > 初中数学 > 题目详情
如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求A、B的坐标;
(2)求抛物线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
(1)∵y=3x+3,
∴当x=0时,y=3,当y=0时,x=-1,
∴A(-1,0),B(0,3).

(2)设抛物线的解析式为y=ax2+bx+c,由题意,得
0=a-b+c
3=c
0=9a+3b+c

解得
a=-1
b=2
c=3

∴抛物线的解析式为:y=-x2+2x+3

(3)∵y=-x2+2x+3,
∴y=-(x-1)2+4
∴抛物线的对称轴为x=1,设Q(1,a),
(1)当AQ=BQ时,如图,
由勾股定理可得
BQ=
BF2+QF2
=
(1-0)2+(3-a)2

AQ=
AD2+QD2
=
22+a2

(1-0)2+(3-a)2
=
22+a2
,解得
a=1,
∴Q(1,1);
(2)如图:
当AB是腰时,Q是对称轴与x轴交点时,AB=BQ,
(1-0)2+(a-3)2
=
10

解得:a=0或6,
当Q点的坐标为(1,6)时,其在直线AB上,A、B和Q三点共线,舍去,
则此时Q的坐标是(1,0);
(3)当AQ=AB时,如图:
22+a2
=
10
,解得a=±
6
,则Q的坐标是(1,
6
)和(1,-
6
).
综上所述:Q(1,1),(1,0),(1,
6
),(1,-
6
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,与x轴另一交点为D,与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式;
(2)如图,连接AC,在抛物线上是否存在点P,使∠ACD+∠ACP=45°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,
①点E在运动过程中四边形OEAF的面积是否发生变化,并说明理由;
②当EF分四边形OEAF的面积为1:2两部分时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-
3
),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1.
(1)求该二次函数的解析式;
(2)点D为直线BC下方的二次函数图象上的一个动点(点D与B、C不重合),过点D作y轴的平行线交BC于点E,设点D的横坐标为m,DE=n,n与m的函数关系式;
(3)点M在y轴上,点N在抛物线上.是否存在以M、N、A、B四点为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

用“?”定义一种新运算:对于任意实数m,n和抛物线y=-ax2,当y=ax2?(m,n)后都可以得到y=a(x-m)2+n.例如:当y=2x2?(3,4)后都可以得到y=2(x-3)2+4.若函数y=x2?(1,n)得到的函数如图所示,则n=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知梯形ABCD中,ADBC,且AD<BC,AD=5,AB=DC=2.
(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;
②当CE=1时,写出AP的长.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=kx+2与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(2,1),点D的横坐标为
1
2

(1)求点D的坐标;
(2)求抛物线的函数表达式;
(3)抛物线在x轴上方部分是否存在一点P,使△POA的面积比△POB的面积大4?如果存在,求出点P的坐标;如果不存在,说明理由.
(4)将题中的抛物线y=ax2+bx沿x轴平移,当抛物线经过点B时,请直接写出平移的方向和距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm.窗户的适光面积为ym2,y与x的函数图象如图2所示.
(1)当窗户透光面积最大时,求窗框的两边长;
(2)要使窗户透光面积不小于1m2.则窗框的一边长x应该在什么范围内取值?

查看答案和解析>>

同步练习册答案