【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数(x>0)在第一象限内的图象经过点D,且与AB、BC分别交于E、F两点,若四边形BEDF的面积为1,则k的值为_____.
【答案】.
【解析】
连接OF,EO,如图,根据反比例函数系数k的几何意义可得△OCF、△OAE、矩形OABC的面积与|k|的关系,进而可列出关于k的方程,解方程即得答案.
解:连接OF,EO,∵点D为对角线OB的中点,四边形BEDF的面积为1,
∴S△BDF=S△ODF,S△BDE=S△ODE,
∴四边形FOED的面积为1,
由题意得:E、F、D位于反比例函数图象上,且由于函数图象在第一象限,
∴k>0,∴S△OCF=,S△OAE=,
过点D作DG⊥y轴于点G,作DN⊥x轴于点N,则S矩形ONDG=k,
又∵D为矩形ABCO对角线的交点,则S矩形ABCO=4S矩形ONDG=4k,
∴++2=4k,解得:k=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在,中,,连接,是中点,连接
(1)如图1,若三点在同一直线上,,已知,求线段的长;
(2)如图2,若,求证:为等腰直角三角形;
(3)如图3,若,请判断的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:直线AB与双曲线y=点交于A、B两点,直线AB与x、y坐标轴分别交于C、D两点,连接OA,若OA=2,tan∠AOC=,B(3,m)
(1)求一次函数与反比例函数解析式;
(2)若点F是点D关于x轴的对称点,求△ABF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,反比例函数y=(x>0,k>0图象上的两点(n,3n)、(n+1,2n).
(1)求n的值;
(2)如图,直线l为正比例函数y=x的图象,点A在反比例函数y=(x>0,k>0)的图象上,过点A作AB⊥l于点B,过点B作BC⊥x轴于点C,过点A作AD⊥BC于点D,记△BOC的面积为S1,△ABD的面积为S2,求S1﹣S2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,平行四边形ACDE的一边在直径AB上,点E在⊙O上.
(1)如图1,当点D在⊙O上时,请你仅用无刻度的直尺在AB上取点P,使DP⊥AB于P;
(2)如图2,当点D在⊙O内时,请你仅用无刻度的直尺在AB上取点Q,使EQ⊥AB于Q.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD中,E,F是对角线BD上的两点, 如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知半圆O,点C、D在弧AB上,连接AD、BD、CD,∠BDC+2∠ABD=90°.
(1)如图1,求证:DA=DC;
(2)如图2,作OE⊥BD交半圆O于点E,连接AE交BD于点F,连接AC,求证:∠DFA=∠DAC+∠DAE;
(3)如图3,在(2)的条件下,设AC交BD于点G,FG=1,AG=5,求半圆O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com