【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交
于点A(1,4)、点B(-4,n).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
【答案】(1)y=x+3;(2) ;(3)当x>1或-4<x<0时,一次函数值大于反比例函数值.
【解析】试题分析:(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;
(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;
(3)根据A、B的坐标结合图象即可得出答案.
试题解析:
(1)把A点(1,4)分别代入反比例函数y=k/x,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,
∴反比例函数的解析式是y=4/x,一次函数解析式是y=x+3;
(2)如图,设直线y=x+3与y轴的交点为C,
当x=-4时,y=-1,∴B(-4,-1),当x=0时,y=+3,∴C(0,3),
∴S△AOB=S△AOC+S△BOC=×3×4+×3×1=15/2
(3)∵B(-4,-1),A(1,4),∴根据图象可知:当x>1或-4<x<0时,一次函数值大于反比例函数值.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正确的是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:
(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;
(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;
(3)在(2)条件下求出正方形CFGH的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若 : =1:2,求AE:EB:BD的值(请你直接写出结果);
(3)若点C是弧AB的中点,已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象经过A(2,-4).
(1)求k的值.
(2)这个函数的图象在哪几个象限?y随x的增大怎样变化?
(3)画出函数的图象.
(4)点B(-2,4),C(-1,5)在这个函数的图象上吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,OB是∠AOC的平分线,OD是∠COE的平分线.
(1)若∠AOB=50°,∠DOE=35°,求∠BOD的度数;
(2)若∠AOE=160°,∠COD=40°,求∠AOB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.
(1)求证:△ADE≌△CED;
(2)求证:DE∥AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校开展的小制作评比活动中,二年级六个班都参加了比赛,根据他们上交作品的件数,绘制直方图如右.已知从左至右各长方形高的比为2∶3∶4∶2∶3∶1,小制作件数最多的三班上交了16件.经评选各班获奖件数如下表:
在这次评选中,获奖率最高的两个班级依次是( ).
A. 5班、3班 B. 3班、4班 C. 5班、6班 D. 6班、5班
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com