A. | $\frac{5}{6}$ | B. | 1 | C. | $\frac{13}{6}$ | D. | $\frac{5}{2}$ |
分析 连结DF,利用基本作图得到由EF垂直平分BD,则BF=DF,设BF=x,则DF=x,CF=3-x,然后在Rt△DCF中利用勾股定理得到22+(3-x)2=x2,然后解方程即可.
解答 解:连结DF,由作法得EF垂直平分BD,则BF=DF,
∵点D是AC的中点,
∴CD=$\frac{1}{2}$AC=2,
设BF=x,则DF=x,CF=3-x,
在Rt△DCF中,22+(3-x)2=x2,解得x=$\frac{13}{6}$,
即BF=$\frac{13}{6}$.
故选C.
点评 本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了勾股定理.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{y}$ | B. | $\sqrt{-y}$ | C. | -$\sqrt{y}$ | D. | -$\sqrt{-y}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 8 | B. | 10 | C. | 12 | D. | 14 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{15}{2}$ | B. | $\frac{3}{2}$($\sqrt{7}$+4) | C. | 6 | D. | $\frac{3}{2}$(4±$\sqrt{7}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com