【题目】(1)已知关于x的方程kx=11﹣2x有整数解,则负整数k的值为 .
(2)若a+b+c=0,且a>b>c,以下结论:
①a>0,c>0;
②关于x的方程ax+b+c=0的解为x=1;
③a2=(b+c)2;
④的值为0或2;
⑤在数轴上点A、B、C表示数a、b、c,若b<0,则线段AB与线段BC的大小关系是AB>BC.
其中正确的结论是 (填写正确结论的序号).
【答案】(1)﹣1,﹣3,﹣13;(2)②③⑤.
【解析】
(1)解方程kx=11-2x,得出x=,根据方程有整数解,得出k+2是11的约数,求出k的值,再根据k为负整数即可确定k;
(2)根据a+b+c=0,且a>b>c推出a>0,c<0,即可判断①;
根据a+b+c=0求出a=-(b+c),又ax+b+c=0时ax=-(b+c),方程两边都除以a即可判断②;
根据a=-(b+c)两边平方即可判断③;
分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出,求出结果,即可判断④;
求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断⑤.
(1)解方程kx=11﹣2x,得x=,
∵方程有整数解,
∴k+2=1,﹣1,11,﹣11,
∴k=﹣1,﹣3,9,﹣13,
∵k为负整数,
∴k=﹣1,﹣3,﹣13.
故答案为﹣1,﹣3,﹣13;
(2)∵a+b+c=0,且a>b>c,
∴a>0,c<0,∴①错误;
∵a+b+c=0,a>b>c,
∴a>0,a=﹣(b+c),
∵ax+b+c=0,
∴ax=﹣(b+c),
∴x=1,∴②正确;
∵a=﹣(b+c),
∴两边平方得:a2=(b+c)2,∴③正确;
∵a>0,c<0,
∴分为两种情况:
当b>0时, ==1+1+(﹣1)+(﹣1)=0;
当b<0时, ==1+(﹣1)+(﹣1)+1=0;
∴④错误;
∵a+b+c=0,且a>b>c,b<0,
∴a>0,c<0,a=﹣b﹣c,
∴AB=a﹣b=﹣b﹣c﹣b=﹣2b﹣c=﹣3b+b﹣c,BC=b﹣c,
∵b<0,
∴﹣3b>0,
∴﹣3b+b﹣c>b﹣c,
∴AB>BC,∴⑤正确;
即正确的结论有②③⑤,
故答案为:②③⑤.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,BC=5 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在扇形OAB中,∠O=60°,OA=4 ,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA, ,OB上,则图中阴影部分的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是( )
A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B,记点B关于抛物线对称轴的对称点为C(点B,点C不重合).连接CB,CP.
(1)当m= 时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,当CA⊥CP时,求m的值;
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E恰好落在坐标轴上?若存在,请直接写出所有满足条件的点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板的两直角边所在直线分别与直线BC,CD交于点M,N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是__________________;
(2)如图2,若点O在正方形的中心(即两对角线的交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说理)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com