精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的精英家教网延长线交于点P,PC=PG.
(1)求证:PC是⊙O的切线;
(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;
(3)在满足(2)的条件下,AB=10,ED=4
6
,求BG的长.
分析:(1)连OC,由ED⊥AB得到∠FBG+∠FGB=90°,又PC=PD,则∠1=∠2,而∠2=∠FGB,∠4=∠FBG,即可得到∠1+∠4=90°,根据切线的判定定理即可得到结论;
(2)连OG,由BG2=BF•BO,即BG:BO=BF:BG,根据三角形相似的判定定理得到△BGO∽△BFG,由其性质得到∠OGB=∠BFG=90°,然后根据垂径定理即可得到点G是BC的中点;
(3)连OE,由ED⊥AB,根据垂径定理得到FE=FD,而AB=10,ED=4
6
,得到EF=2
6
,OE=5,在Rt△OEF中利用勾股定理可计算出OF,从而得到BF,然后根据BG2=BF•BO即可求出BG.
解答:精英家教网(1)证明:连OC,如图,
∵ED⊥AB,
∴∠FBG+∠FGB=90°,
又∵PC=PG,
∴∠1=∠2,
而∠2=∠FGB,∠4=∠FBG,
∴∠1+∠4=90°,即OC⊥PC,
∴PC是⊙O的切线;

(2)证明:连OG,如图,
∵BG2=BF•BO,即BG:BO=BF:BG,
而∠FBG=∠GBO,
∴△BGO∽△BFG,
∴∠OGB=∠BFG=90°,
即OG⊥BG,
∴BG=CG,即点G是BC的中点;

(3)解:连OE,如图,
∵ED⊥AB,
∴FE=FD,
而AB=10,ED=4
6

∴EF=2
6
,OE=5,
在Rt△OEF中,OF=
OE2-EF2
=
52-(2
6
)
2
=1,
∴BF=5-1=4,
∵BG2=BF•BO,
∴BG2=BF•BO=4×5,
∴BG=2
5
点评:本题考查了切线的判定定理:过半径的外端点与半径垂直的直线是圆的切线.也考查了垂径定理、勾股定理以及三角形相似的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案