精英家教网 > 初中数学 > 题目详情

已知:如图,Rt△ABC中,∠ACB=90°,P是边AB上一点,AD⊥CP,BE⊥CP,垂足分别为D、E,已知AB=数学公式,BC=数学公式,BE=5.求DE的长.

解:如右图,
∵∠ACB=90°,AB=,BC=
∴AC=3,
同理可求CE=2
∵AD⊥CP,
∴∠DAC+∠ACD=90°,
∵∠ACD+∠BCE=90°,
∴∠DAC=∠BCE,
又∵∠BEC=∠ADC=90°,
∴△ACD∽△CBE,
∴AC:CD=CB:BE,
∴3:CD=3:5,
∴CD=
∴DE=2-=
分析:由于∠ACB=90°,AB=,BC=,利用勾股定理可求AC=3,同理可求CE=2,而AD⊥CP,吗,那么∠DAC+∠ACD=90°,又∠ACD+∠BCE=90°,根据同角的余角相等可得∠DAC=∠BCE,再结合∠BEC=∠ADC=90°,易证△ACD∽△CBE,于是AC:CD=CB:BE,易求CD,进而可求DE.
点评:本题考查了相似三角形的判定和性质,解题的关键是证明△ACD∽△CBE,求出CD,进而求出DE.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等,垂直或平行关系中的一种,那么请你把它写出来并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD,连接DE、DC.
(1)求证:△ACE≌△BCD;
(2)猜想:△DCE是
等腰直角
三角形;并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且O精英家教网C=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,点E是AC的中点.
求证:∠EBD=∠EDB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.
求证:MN=AC.

查看答案和解析>>

同步练习册答案