分析 (1)根据正方形的性质得到∠AEB=∠EBF,由已知条件得到∠A=∠BHF,根据相似三角形的判定定理即可得到结论;
(2)根据已知条件得到FH是等腰△FBE底边上的高,求得BH=$\frac{1}{2}$BE,由根据相似三角形的性质得到$\frac{AE}{BH}=\frac{BE}{BF}$,等量代换即可得到结论;
(3)由已知条件得到正方形ABCD的边长为2,设AE=k(0<k<2),则DE═2-k,BF=4-k,根据勾股定理列方程即可得到结果.
解答 (1)证明:∵在正方形ABCD中,AD∥BC,
∴∠AEB=∠EBF,
又∵∠A=90°,FH⊥BE,
∴∠A=∠BHF,
∴△ABE∽△HFB;
(2)∵∠FBE=∠FEB,
∴BF=EF,FH⊥BE,
∴FH是等腰△FBE底边上的高,
∴BH=$\frac{1}{2}$BE,
由(1)得,$\frac{AE}{BH}=\frac{BE}{BF}$,
∴$\frac{AE}{{\frac{1}{2}BE}}=\frac{BE}{BF}$,
∴BE2=2AE•BF;
(3)解:∵DG═1,
∴正方形ABCD的边长为2,
设AE=k(0<k<2),则DE═2-k,BF=4-k,
∴在Rt△ABM中,BE2=AB2+AE2=4+k2,
由BE2=2AE•BF,得4+k2=2k(4-k),
即3k2-8k+4=0,解得$k=\frac{2}{3}$,k=2,
∵k≠2,
∴AE=$\frac{2}{3}$.
点评 本题考查了相似三角形的判定和性质,正方形的性质,等腰三角形的性质,勾股定理,平行线的性质,证得△ABE∽△HFB是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com