精英家教网 > 初中数学 > 题目详情
如图1,四边形ABCD,将顶点为A的角绕着顶点A顺时针旋转,角的一条边与DC的延长线交于点F,角的另一边与CB的延长线交于点E,连接EF.
(1)如果四边形ABCD为正方形,当∠EAF=45°时,有EF=DF-BE.请你思考如何证明这个结论(只需思考,不必写出证明过程);
(2)如图2,如果在四边形ABCD中,AB=AD,∠ABC=∠ADC=90°,当∠EAF=
1
2
∠BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论);
(3)如图3,如果在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,当∠EAF=
1
2
∠BAD时,EF与DF、BE之间有怎样的数学关系?请写出它们之间的关系式并给予证明;
(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周长(直接写出结果即可).
精英家教网
分析:(1)(2)(3)的解题思路一致,都是通过两步全等来实现;在DF上截取DM=BE,第一步,首先证△ADM≌△ABE,得DF=BE;第二步,证△AMF≌△AEF,得EF=FM,由此得到DF、EF、BE的数量关系.
(4)根据前三问的结论知:EF=DF-BE,那么△CEF的周长可转化为:EF+BE+BC+FC=DF+BC+FC,即可得解.
解答:精英家教网解:(1)证明:在DF上截取DM=BE;
∵AD=AB,∠ABE=∠ADM=90°,
∴△ABE≌△ADM(SAS),
∴AE=AM,∠EAB=∠DAM;
∵∠EAF=45°,且∠EAB=∠DAM,
∴∠BAF+∠DAM=45°,即∠MAF=45°=∠EAF,
又∵AE=AM,AF=AF,
∴△AEF≌△AMF,得EF=FM,
∵DF=DM+FM,
∴DF=BE+EF,即EF=DF-BE.

(2)EF=DF-BE.(解法参照(1)(3))

(3)EF=DF-BE.
证明:在DF上截取DM=BE,
∵∠D+∠ABC=∠ABE+∠ABC=180°,
∴∠D=∠ABE,
∴AD=AB,
∴△ADM≌△ABE,
∴AM=AE,
∴∠DAM=∠BAE;
∵∠EAF=∠BAE+∠BAF=
1
2
∠BAD,
∴∠MAF=
1
2
∠BAD,
∴∠EAF=∠MAF;
∵AF是△EAF与△MAF的公共边,
∴△EAF≌△MAF,
∴EF=MF;
∵MF=DF-DM=DF-BE,
∴EF=DF-BE.

(4)由上面的结论知:DF=EF+BE;
∴△CEF的周长=EF+BE+BC+CF=DF+BC+CF=9+4+2=15.
即△CEF的周长为15.
点评:此题主要考查的是全等三角形的判定和性质,通过两步全等来证得关键的两组线段相等是此题的基本思路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂精英家教网足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)含y的代数式表示AE;
(2)y与x之间的函数关系式,并求出x的取值范围;
(3)设四边形DECF的面积为S,x在什么范围时s随x增大而增大.x在什么范围时s随x增大而减小,并画出s与x图象;
(4)求出x为何值时,面积s最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的中线,AE=EF=FC,BE、AD相交于点G,下列4个结论:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四边形EFDG;其中正确的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案