精英家教网 > 初中数学 > 题目详情

复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP则BQ=CP.”

小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABC≌△ACP,从而证得BQ=CP.之后,他将点P移到等腰三角形ABC外,原题中其它条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.

答案:
解析:

  证明:∵∠QAP=∠BAC

  ∴∠QAP+∠PAB=∠PAB+∠BAC

  即∠QAB=∠PAC 4分

  在△ABQ和△ACP中

  AQ=AP

  ∠QAB=∠PAC

  AB=AC


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.
(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南湖区二模)在特殊四边形的复习课上,王老师出了这样一道题:
如图1,在?ABCD中,E、F、G、H分别为AB,BC,CD,DA边上的动点,连接EG,HF相交于点O,且∠HOE=∠ADC,若AB=a,AD=b,试探究:EG与FH的数量关系.
经过小组讨论后,小聪建议分以下三步进行,请你解答:
(1)特殊情况,探索结论
当?ABCD是边长为a的正方形时(如图2),请写出EG与FH的数量关系(不必证明);
(2)尝试变题,再探思路
当?ABCD是边长为a的菱形时(如图3),EG与FH又有怎样的数量关系呢?
小聪想:要求EG与FH的数量关系,就要构成全等三角形或相似三角形,于是,分别过点G、H作GM⊥AB于点M,HN⊥BC于点N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面积与性质可得GM=HN,能否从已知条件得到∠MGE=∠NHF呢?请你根据小聪的思路完成解答过程;
(3)特例启发,解答题目
猜想:原题中EG与FH的数量关系是
EG
FH
=
b
a
EG
FH
=
b
a
,并说明理由.

查看答案和解析>>

科目:初中数学 来源:北京期中题 题型:证明题

复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.
(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP。”

           

(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP。请你帮小亮完成证明。

(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明。若不成立,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2008-2009学年北京市八一中学九年级(上)期中数学模拟试卷(解析版) 题型:解答题

复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.
(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.

查看答案和解析>>

同步练习册答案