分析 过点D作DM⊥AB于M,作DN⊥AC于N,根据角平分线上的点到角的两边距离相等可得DM=DN,再求出∠AED=∠DFN,然后利用“角角边”证明△DEM和△DFN全等,根据全等三角形对应边相等可得DE=DF.
解答 证明:如图,过点D作DM⊥AB于M,作DN⊥AC于N,
∵AD是∠BAC的平分线,
∴DM=DN,
∵∠AED+∠AFD=180°,
∠DFN+∠AFD=180°(平角定义),
∴∠AED=∠DFN,
在△DEM和△DFN中,$\left\{\begin{array}{l}{∠AED=∠DFN}\\{∠DME=∠DNF=90°}\\{DM=DN}\end{array}\right.$,
∴△DEM≌△DFN(AAS),
∴DE=DF.
点评 本题考查了全等三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com