精英家教网 > 初中数学 > 题目详情
如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是(  )

A.         B.         C.      D.
B.

试题分析:如答图,连接PO,AO,取AO中点G,连接AG,过点A作AH⊥PO于点H,
∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,
∴PA=PB,CA=CE,DB=DE,∠APO=∠BPO,∠OAP=90º.
∵△PCD的周长等于3r,∴PA=PB=.
∵⊙O的半径为r,∴在Rt△APO中,由勾股定理得. ∴.
∵∠OHA=∠OAP=90º, ∠HOA=∠AOP,∴△HOA∽△AOP. ∴,即.
.∴.
∵∠AGH=2∠APO=∠APB, ∴.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

阅读材料:
已知,如图(1),在面积为S的△ABC中, BC=a,AC="b," AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.
.


(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,AC="4" cm ,BC="3" cm,⊙O为△ABC的内切圆.
(1)求⊙O的半径;
(2)点P从点B沿边BA向点A以点1cm/s 的速度匀速运动,以点P为圆心,PB长为半径作圆.设点P运动的时间为 t s.若⊙P与⊙O相切,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知半径为1的圆的圆心为M(0,1),点B(0,2),A是x轴负半轴上的一点,D是OA的中点,AB交⊙M于点C.若四边形BCDM为平行四边形,则sin∠ABD=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用一把带有刻度的直尺,①可以画出两条平行的直线与b,如图⑴;②可以画出∠AOB的平分线OP,如图⑵所示;③可以检验工件的凹面是否为半圆,如图⑶所示;④可以量出一个圆的半径,如图⑷所示.这四种说法正确的个数有                 (    )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是圆0直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是_____________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知两圆的半径R、r分别为方程x2-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是(  )
A.外离B.内切C.相交D.外切

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1、⊙O2的半径不相等,⊙O1的半径长为3,若⊙O2上的点A满足AO1=3,则⊙O1与⊙O2的位置关系是(   )
A.相交或相切B.相切或相离C.相交或内含 D.相切或内含

查看答案和解析>>

同步练习册答案