【题目】已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣4,0),B点坐标为(6,0),点D为AC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.
(1)求抛物线的解析式;
(2)如图①,将△ADE以DE为轴翻折,点A的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;
(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
【答案】
(1)
解:∵抛物线y=ax2+bx+8经过点A(﹣4,0),B(6,0),
∴ ,
解得 ,
∴抛物线的解析式是:y=﹣ x2+ x+8
(2)
解:如图1
,
作DM⊥抛物线的对称轴于点M,
设G点的坐标为(1,n),由翻折的性质,可得AD=DG,
∵A(﹣4,0),C(0,8),点D为AC的中点,
∴点D的坐标是(﹣2,4),
∴点M的坐标是(1,4),DM=1﹣(﹣2)=1+2=3,
∵B(6,0),C(0,8),
∴AC= =4 ,
∴AD=2 ,
在Rt△GDM中,DG2=DM2+MG2
32+(4﹣n)2=20,解得n=4 ,
∴G点的坐标为(1,4+ )或(1,4﹣ )
(3)
解:存在.
C(0,8),D(﹣2,4),符合条件的点E、F的坐标为:
①如图2
,
CD∥EF,且CD=EF,CDEF时,对角线的交点(﹣ ,4),E1(﹣1,0),F1(1,4);
②如图3
,
CD∥EF,且CD=EF,CDFE时,对角线的交点( ,2),E2(3,0),F2(1,﹣4);
③如图4
,
DE∥CF,DE=CF,DECF时,对角线的交点(﹣1,6),E3(﹣3,0),F3(1,12).
综上所述:E1(﹣1,0),F1(1,4);E2(3,0),F2(1,﹣4);E3(﹣3,0),F3(1,12)
【解析】(1)根据待定系数法,可得函数解析式;(2)根据线段中点的性质,可得D点坐标,根据勾股定理,可得AC的长,根据翻折的性质,可得DG的长,再根据勾股定理,可得方程,根据解方程,可得答案.(3)根据平行四边形的性质,可得答案.
【考点精析】利用勾股定理的概念和平行四边形的性质对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
科目:初中数学 来源: 题型:
【题目】如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;
(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )
A.8
B.10
C.12
D.14
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+b(k<0)与反比例函数y2= 的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1),B(n,2))
(1)求反比例函数和一次函数的解析式;
(2)写出y1>y2时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°。
①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?写出你猜想的结论,并说明理由;
②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截,在下面三个式子只,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并写出对应的推理过程
题设已知;______
结论求证:______
理由:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com