精英家教网 > 初中数学 > 题目详情

【题目】已知Aa0),B0b),且ab满足.

1)填空:a= b=

2)如图1,将ΔAOB沿x轴翻折得ΔAOCD为线段AB上一动点,OEODAC于点E,求S四边形ODAE

3)如图2DAB上一点,过点BBFOD于点G,交x轴于点F,点Hx轴正半轴上一点,∠BFO=DHO,求证:AF=OH.

【答案】(1)a=-3,b=3;(2)4.5;(3)见解析.

【解析】

1)根据二次根式的性质及绝对值的非负性可得:a+3=0a+b=0,求出ab即可;

2)根据条件先证明△BOD≌△AOE,然后将四边形ODAE的面积转化为△AOB的面积进行计算即可;

3)过点OOP平分∠AOBBFP,先证明△BOP≌△OAD,推出OP=AD,再证明△PFO≌△DHA,利用全等的性质即可得出结论.

解:(1)∵ab满足

a+3=0a+b=0

a=3b=3

2)∵由(1)知:A(-30),B03

OA=OB=3

∵△AOB沿x轴翻折得△AOC

OA=OB=OC,∠AOB=∠AOC=90°

∴∠ABO=∠BAO=CAO=45°

又∵OEOD,且∠BOD+AOD =AOB=90°

∴∠AOE+AOD=BOD+AOD=90°

∴∠AOE=BOD

∵∠DBO=∠EAOOBOA,BOD=∠AOE

∴△BOD≌△AOEASA

SAOE=SBOD

S四边形ODAESAOE + SAOD = SBOD + SAOD =SAOB

3)过点OOP平分∠AOBBFP

OP平分∠AOBOA=OB

∴∠AOP=BOP=45°

∴∠AOP=BOP=OAD

BGOD

∴∠OBP+BOG=90°

又∵∠AOD+BOG=90°

∴∠OBP=AOD

OBOA

∴△BOP≌△OADASA

OP=AD

又∵∠PFO=DHO,∠FOP=HAD=45°

∴△PFO≌△DHAAAS

OFAH

OFOA=AHOA,即AFOH.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF内接于⊙O,AB=2,则图中阴影部分的面积为(  )

A. π B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

(用配方法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BECE分别是∠ABC和∠ACB的平分线,过点EDFBCABD,交ACF,若AB =5AC =4,则ADF周长为(  ).

A.7B.8C.9D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为6,面积是36,腰AC的垂直平分线EF分别交ACAB边于EF点.若点DBC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点分别在上,连接的平分线交于点的平分线交于点

求证:四边形是矩形.

小明在完成的证明后继续进行了探索,过点,分别交于点,过点,分别交于点,得到四边形.此时,他猜想四边形是菱形.请在下列框图中补全他的证明思路.

小明的证明思路:由易证,四边形是平行四边形.要证是菱形,只要证.由已知条件________,,可证,故只要证,即证易证________,________,故只要证易证,________,故得,即可得证.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,已知点A(-14)B(-22)C(11).

(1)ΔABC关于x轴对称的A1B1C1,并写出点A1B1C1的坐标,

(2)ABC关于y轴对称的A2B2C2,并写出点A2B2C2的坐标,

(3)观察点A1B1C1A2B2C2的坐标,请用文字语言归纳点A1A2B1B2C1C2坐标之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两张宽为的矩形纸条交叉叠放,其中重叠部分是四边形,已知度,则重叠部分的面积是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,B=90°,AB=8cm,BC=6cm,点P从点A开始沿ABC的边做逆时针运动,且速度为每秒1cm;点Q从点B开始沿ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间为t秒.

(1)出发2秒后,P,Q两点间的距离为多少cm?

(2)在运动过程中,PQB能形成等腰三角形吗?若能,请求出几秒后第一次形成等腰三角形;若不能,则说明理由.

(3)出发几秒后,线段PQ第一次把ABC的周长分成相等两部分?

查看答案和解析>>

同步练习册答案