精英家教网 > 初中数学 > 题目详情
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得精英家教网△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
分析:(1)根据旋转的性质可得出OC=OD,结合题意即可证得结论;
(2)结合(1)的结论可作出判断;
(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.
解答:(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴CO=CD,∠OCD=60°,
∴△COD是等边三角形.

(2)解:当α=150°时,△AOD是直角三角形.
理由是:∵将△BOC绕点C按顺时针方向旋转60°得精英家教网△ADC,
∴△BOC≌△ADC,
∴∠ADC=∠BOC=150°,
又∵△COD是等边三角形,
∴∠ODC=60°,
∴∠ADO=∠ADC-∠ODC=90°,
∵∠α=150°∠AOB=110°,∠COD=60°,
∴∠AOD=360°-∠α-∠AOB-∠COD=360°-150°-110°-60°=40°,
∴△AOD不是等腰直角三角形,即△AOD是直角三角形.

(3)解:①要使AO=AD,需∠AOD=∠ADO,精英家教网
∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,
∴190°-α=α-60°,
∴α=125°;
②要使OA=OD,需∠OAD=∠ADO.
∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,
∴α-60°=50°,
∴α=110°;
③要使OD=AD,需∠OAD=∠AOD.
∵∠OAD=360°-110°-60°-α=190°-α,
∠AOD=
180°-(α-60°)
2
=120°-
α
2

∴190°-α=120°-
α
2

解得α=140°.
综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.
点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,点D是等边三角形ABC内的一点,将△BDC绕点C顺时针旋转60°,试画出旋转后的三角形,并指出图中的全等图形以及它们的对应顶点、对应边和对应角.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,点P是等边三角形ABC内一点,BP=5cm,△PAB绕点B旋转后能与△MCB重合,连接PM,则PM=
5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.以OC为一边作等边三角形OCD,连接AC、AD.
(1)当a=150°时,试判断△AOD的形状,并说明理由;
(2)探究:当a为多少度时,△AOD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•清流县质检)星期天,小明在解答下列题目时卡壳了.
题目1:如图①,在△ABC中,AC=BC,∠ACB=90°,O为△ABC内的一点,OC=1,OA=
3
,OB=
5
.求∠AOC的度数.
小明去请教小颖正在解答下列题目.
题目2:如图②,点O是等边三角形ABC内的一点,将△BCO绕C顺时针方向旋转60°得到△ADC,连接OD.
(1)试判断△COD的形状,并说明理由;
(2)当∠COB=150°时,试判断△AOD的形状,并写出OA、OB、OC三者之间的等量关系式.
小颖说:“等等,等我做完了,我们一起来看.”小明看完,小颖做完后高兴地说:“哈哈,太好了,我会了.”聪明的同学,你能先解答完题目2,再根据解答所得到的启迪来完成题目1吗?写出你的解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将线段OC绕点C按顺时针方向旋转60°得到线段CD,连接OD、AD.
(1)求证:AD=BO;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当α为多少度时(直接写出答案),△AOD是等腰三角形?

查看答案和解析>>

同步练习册答案