(本题满分12分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
1.(1)求弦AB的长;
2.(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;
3.(3)记△ABC的面积为S,若=4,求△ABC的周长.
1.(1)连接OA,取OP与AB的交点为F,则有OA=1.
∵弦AB垂直平分线段OP,∴OF=OP=,AF=BF.
在Rt△OAF中,∵AF===,∴AB=2AF=
2.(2)∠ACB是定值.
理由:由(1)易知,∠AOB=120°,
因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA,
因为∠DAE+∠DBA=∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°
3.(3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC.
∴
=AB•DE+BC•DH+AC•DG=(AB+BC+AC) •DE=l•DE.
∵=4,∴=4,∴l=8DE.
∵CG,CH是⊙D的切线,∴∠GCD=∠ACB=30°,
∴在Rt△CGD中,CG=DE,∴CH=CG=DE.
又由切线长定理可知AG=AE,BH=BE,∴l=AB+BC+AC=2+2DE=8DE,解得DE=,
∴△ABC的周长为.
【解析】略
科目:初中数学 来源: 题型:
(本题满分12分)
如图,直角梯形ABCD中,AB∥DC,,,.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当时,求线段的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(贵州铜仁卷)数学 题型:解答题
(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年上海市徐汇区中考一模数学卷 题型:解答题
(本题满分12分)
如图,的顶点A、B在二次函数的图像上,又点A、B[来分别在轴和轴上,∠ABO=.
1.(1)求此二次函数的解析式;(4分)
2.
|
点在上述函数图像上,当与相似时,求点的坐标.(8分)
查看答案和解析>>
科目:初中数学 来源:2010年高级中等学校招生考试数学卷(广东珠海) 题型:解答题
(本题满分12分)如图1,抛物线与x轴交于A、C两点,与y轴交于B点,与直线交于A、D两点。
⑴直接写出A、C两点坐标和直线AD的解析式;
⑵如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
查看答案和解析>>
科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(广西桂林) 题型:解答题
(本题满分12分)
如图,直角梯形ABCD中,AB∥DC,,,.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当时,求线段的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com