【题目】已知AB是⊙O的弦,点P是优弧AB上的一个动点,连接AP,过点A作AP的垂线,交PB的延长线于点C.
(1)如图1,AC与⊙O相交于点D,过点D作⊙O的切线,交PC于点E,若DE∥AB,求证:PA=PB;
(2)如图2,已知⊙O的半径为2,AB=2.
①当点P在优弧AB上运动时,∠C的度数为 °;
②当点P在优弧AB上运动时,△ABP的面积随之变化,求△ABP面积的最大值;
③当点P在优弧AB上运动时,△ABC的面积随之变化,△ABC的面积的最大值为 .
【答案】(1)证明见解析;(2)①30;②3;③6+3.
【解析】
(1)根据90°的圆周角所对的弦是直径可得PD是直径,结合DE是切线,DE∥AB,可得AB⊥PD,利用垂径定理可证.
(2)①只要求出∠AOB的度数,便可知∠APC的度数,利用∠C和∠APC互余的关系可得∠C度数;②分析后可以发现:PD⊥AB时面积最大;③利用∠C的数值不变可知点C在AB为弦的同一个圆上运动,进而找到C点在何处可使得△ABC面积最大,从而求值.
(1)如图1,连接DP交AB于点F.
∵CA⊥AP,∴DP是⊙O的直径.
∵DE是⊙O的切线,∴DE⊥DP.
又∵DE∥AB,∴AB⊥DP,∴DP垂直平分AB(垂径定理),∴PA=PB;
(2)①连接OA、OB,由(1)知,DP垂直平分AB.
∵AB=2,∴AF=BF.
∵⊙O的半径是2,∴OA=OB=2,∴sin∠AOF,∴∠AOF=60°,∴∠AOB=120°,∴∠APB∠AOB=60°.
∵CA⊥AP,∴∠C+∠APB=90°,∴∠C=30°;
②当点P在优弧AB上运动时,△ABP的面积由点P到AB的距离决定.
根据图形的性质可知:如图2,当点P运动到PD⊥AB时,PF即是最大距离.
∵OA=2,PD⊥AB,∠AOF=60°,∴OF=1,∴PF=OF+OP=1+2=3,∴△ABP的面积最大值是:ABPF3=3;
③由①知在变化过程中∠ACB=30°恒成立,∴点C在以AB为弦的某个圆上运动,设这个圆的圆心为H,如图3所示.
连接AH、BH,∴∠AHB=2∠ACB=60°.
∵AH=BH,∴△ABH是等边三角形.
∵AB=2,∴⊙H的半径HA=2,作CG⊥AB,显然,当C点运动到CG经过圆心H时△ABC面积最大.
此时,CG=CH+HG,CH=2.
∵HG⊥AB,AB=2,∴HG=AHsin60°=3,∴CG=23,∴△ABC面积最大值是:
ABCG(23)=6+3.
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,
∵△=49﹣48>0,
∴x1=_____,x2=_______,
∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在8×8的网格中的每个小正方形边长都是1,线段交点称作格点.任意连接这些格点,可得到一些线段.按要求作图:
(1)请画出△ABC的高AD;
(2)请连接格点,用一条线段将图中△ABC分成面积相等的两部分;
(3)直接写出△ABC的面积是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60,请你探究OE,EF之间有什么数量关系?并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC中,∠ACB=90°,AC=BC.
(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;
(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;
(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,Rt△ABC中,∠ACB=90°,P是边AB上一点,AD⊥CP,BE⊥CP,垂足分别为D、E,已知AB=3,BC=3,BE=5.求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com