精英家教网 > 初中数学 > 题目详情

作业宝如图,△ABC的内切圆I分别切BC、AC于点M、N,点E、F分别为边AB、AC的中点,D是直线EF与BI的交点.证明:M、N、D三点共线.

证明:连接AD,IA,IC,IM,IN,连结MD交AC于G,连结IG,如图,
∵点E、F分别为边AB、AC的中点,
∴EF∥BC,
∴∠2=∠3,
∵⊙I为△ABC的内切圆,
∴∠1=∠2,
∴∠1=∠3,
∴EB=ED,
∴AE=BE=ED,
∴△ABD为直角三角形,
∴∠ADB=90°,
∵IM⊥BC,
而∠1=∠2,
∴Rt△BAD∽Rt△BIM,
=

∴△BAI∽△BDM,
∴∠AIB=∠DMB,
∵点I为△ABC的内心,
∴∠AIB=90°+∠ACB,
∴∠DMB=90°+∠ACB,
∵∠DMB=∠BMI+∠4=90°+∠4,
∴∠4=∠ACB,
∵⊙I为△ABC的内切圆,
∴∠5=∠ICM=∠ACB,
∴∠4=∠5,
∴I、M、C、G四点共圆,
∵∠IMC=90°,
∴∠IGC=90°,
∴IG⊥AC,
∴N点与G点重合,
∴M、N、D三点共线.
分析:连接AD,IA,IC,IM,IN,连结MD交AC于G,连结IG,利用三角形中线性质得到EF∥BC,则∠2=∠3,由⊙I为△ABC的内切圆,根据切线长定理得∠1=∠2,代换得到∠1=∠3,则EB=ED,即AE=BE=ED,根据直角三角形的判定方法得到△ABD为直角三角形,易证得Rt△BAD∽Rt△BIM,得到=,变形得,根据三角形相似的判定方法可得到△BAI∽△BDM,则∠AIB=DMB,又由于点I为△ABC的内心,根据内心的性质得∠AIB=90°+∠ACB,所以∠DMB=90°+∠ACB,而∠DMB=∠BMI+∠4=90°+∠4,所以∠4=∠ACB,易得∠4=∠5,根据四点共圆的判定方法得到I、M、C、G四点共圆,而∠IMC=90°,根据圆内接四边形的性质得∠IGC=90°,则IG⊥AC,而N为切点,所以N点与G点重合,于是得到M、N、D三点共线.
点评:本题考查了四点共圆:如果线段同侧二点到线段两端点连线的夹角相等,那么这二点和线段二端点四点共圆;圆的内接四边形的内角互补.也考查了切线长定理、三角形内心的性质以及三角形相似的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知:如图,△ABC内接于⊙O,AE切⊙O于点A,BD∥AE交AC的延长线于点D,求证:AB2=AC•AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC内接于⊙O1,以AC为直径的⊙O2交BC于点D,AE切⊙O1于点A,交⊙O2精英家教网点E,连接AD、CE,若AC=7,AD=3
5
,tanB=
5
2

求:(1)BC的长;
(2)CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,△ABC内切⊙O于D、E、F三点,内切圆⊙O的半径为1,∠C=60°,AB=5,则△ABC的周长为(  )
A、12
B、14
C、10+2
3
D、10+
3

查看答案和解析>>

科目:初中数学 来源:解题升级  解题快速反应一典通  九年级级数学 题型:044

己知:如图,⊙O与内切于点B,BC是⊙O的直径,BC=6,BF为的直径,BF=4,⊙O的弦BA交于点D,连接DF、AC、CD.(1)求证:DF∥AC;(2)当∠ABC等于多少度时,CD与相切?并证明你的结论.(3)在(2)的前提下,连接FA交CD于点E,求AF、EF的长.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

已知如图,⊙O的内接△ABC,AE切⊙O于A点,过C作AE的平行线交AB于D点.   
(1)求证:AC2=AB·AD.  
(2)若∠B=60°,⊙O的直径为6,求S

查看答案和解析>>

同步练习册答案