精英家教网 > 初中数学 > 题目详情
5.已知:如图,△RPQ中,RP=RQ,M为PQ的中点.
求证:RM平分∠PRQ.证明:∵M为PQ的中点(已知),
∴PM=QM(线段中点的定义)
在△RPM和△RQM中,

∴△RPM≌△RQM(SSS)
∴∠PRM=∠QRM(两三角形全等,对应角相等)
即RM平分∠PRQ.

分析 先根据M为PQ的中点得出PM=QM,再由SSS定理得出△PRM≌△QRM,由全等三角形的性质即可得出结论.

解答 证明:∵M为PQ的中点(已知),
∴PM=QM(线段中点的定义)
在△PRM和△QRM中,$\left\{\begin{array}{l}{RP=RQ}\\{PM=QM(已证)}\\{RM=RM(公共边)}\end{array}\right.$,
∴△PRM≌△QRM(SSS)
∴∠PRM=∠QRM(两三角形全等,对应角相等)
即RM平分∠PRQ.
故答案为:QM,线段中点的定义,$\left\{\begin{array}{l}{RP=RQ}\\{PM=QM(已证)}\\{RM=RM(公共边)}\end{array}\right.$,△PRM,△QRM,(SSS),∠QRM,(两三角形全等,对应角相等).

点评 本题考查的是等腰三角形的性质,熟知等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.
小明画出树状图如图所示:

小华列出表格如下:
第一次
第二次
1234
1(1,1)(2,1)(3,1)(4,1)
2(1,2)(2,2)(4,2)
3(1,3)(2,3)(3,3)(4,3)
4(1,4)(2,4)(3,4)(4,4)
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);
(3)规定两次抽到的数字之和为奇数的获胜,按照各自的规则,你认为谁获胜的可能性大?说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知△ABC中,点F在边AB上,且AF=$\frac{2}{5}$AB、过A作AG∥BC交CF的延长线于点G.
(1)设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,试用向量$\overrightarrow{a}$和$\overrightarrow{b}$表示向量$\overrightarrow{AG}$;
(2)在图中求作向量$\overrightarrow{AG}$与$\overrightarrow{AB}$的和向量.
(不要求写作法,但要指出所作图中表示结论的向量)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在代数式$\frac{2}{3}$x,$\frac{1}{x}$,$\frac{2}{3}$xy2,$\frac{3}{x+4}$,$\frac{2{x}^{2}+5}{2x}$,x2-x 中,分式共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.一种细菌半径为0.000432米,用科学记数法表示为4.32×10-4米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生密码,方便记忆.
原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:103010(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知:等腰三角形的两边长分别为 6cm,3cm,则此等腰三角形的周长是15 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知二次函数y=ax2+bx+c,若a>0,c<0,那么它的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案