精英家教网 > 初中数学 > 题目详情
10.如图,铁路上A,B两点相距20km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=10km,CB=5km,现在要在铁路AB上建一个货运站E,使得C,D两村到E站距离相等,问:E站应建立在离A多少千米处?

分析 设AE=x,则EB=20-x,根据题意得ED=EC,在Rt△AED和Rt△EBC中运用勾股定理求出x的值即可.

解答 解:设AE=x,则EB=20-x,根据题意有:ED=EC,
在Rt△AED和Rt△EBC中,运用勾股定理得:x2+102=(20-x)2+52
解得:x=$\frac{65}{8}$.
答:E站应建立在离A处$\frac{65}{8}$千米的地方.

点评 本题考查的是勾股定理的应用,根据题意列出关于x的方程是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知:抛物线有=-x2+bx+c经过A(-1,0)、B(5,0)两点,顶点为P.求:
(Ⅰ)求b,c的值;
(Ⅱ)求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图(1),在矩形ABCD中,AB=3,BC=4,连接BD.现将一个足够大的直角三角板的直角顶点P放在BD所在的直线上,一条直角边过点C,另一条直角边与AB所在的直线交于点G.
(1)是否存在这样的点P,使点P、C、G为顶点的三角形与△GCB全等?若存在,画出图形,并直接在图形下方写出BG的长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,如果图形不够用,请自己画图)
(2)如图(2),当点P在BD的延长线上时,以P为圆心、PB为半径作圆分别交BA、BC延长线于点E、F,连EF,分别过点G、C作GM⊥EF,CN⊥EF,M、N为垂足.试探究PM与FN的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.小军同学拿着边长为acm的等边三角形硬纸片从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在x=b处时,停止滚动,且(a-1)2+|b-5|=0.
(1)求a、b的值.
(2)落在x=b处的点是△ABC的哪个顶点?说明理由.
(3)小军测得△MND的边MN上的高为$\frac{1}{2}$cm,将△MND以每秒3cm的速度沿高的方向向上移动2秒,这时△MND扫过的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.观察下列各式:
$\frac{{1}^{2}+1-1}{{1}^{2}+1}$=1-$\frac{1}{{1}^{2}+1}$=1-(1-$\frac{1}{2}$);
$\frac{{2}^{2}+2-1}{{2}^{2}+2}$=1-$\frac{1}{{2}^{2}+2}$=1-($\frac{1}{2}$-$\frac{1}{3}$);
$\frac{{3}^{2}+3-1}{{3}^{2}+3}$=1-$\frac{1}{{3}^{2}+3}$=1-($\frac{1}{3}$-$\frac{1}{4}$);

计算:$\frac{1}{2}$+$\frac{5}{{2}^{2}+2}$+$\frac{11}{{3}^{2}+3}$+…+$\frac{201{5}^{2}+2015-1}{201{5}^{2}+2015}$=2014$\frac{1}{2016}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一个圆柱状的杯子,由内部测得其底面半径为4cm.高为6cm,现有一支11cm的吸管任意斜放于杯中,则吸管露出杯口至少1cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若△ABC∽△A′B′C′,相似比为1:3,则△A′B′C′与△ABC的面积之比为9:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)已知:如图1,在矩形ABCD中,M为边AD的中点,求证:△ABM≌△DCM;
(2)如图2,AB与⊙O相切于C,AO=BO,AB=16,⊙O的半径为6,求OA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在社会实践活动中,张明同学所在的小组深入到某工艺厂,随机调查了部分工人每天生产手工艺品的个数,并把统计结果制成如图所示的不完整的频数分布直方图(从左到右依次为A组、B组、C组、D组、E组)和扇形统计图,请根据图中信息解答下列问题:

(1)本次共调查的工人数是60人;
(2)补全频数分布直方图;
(3)工人每天生产手工艺品个数的中位数落在C组;
(4)估计该工厂560名工人中,每天手工艺品制作多于10个而不多于180个的业务能手有多少人.

查看答案和解析>>

同步练习册答案