精英家教网 > 初中数学 > 题目详情
如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G(保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=______时,S△FGE=S△FBE;当CE=______时,S△FGE=3S△FBE
(1)如图:分别作线段BC、EF的垂直平分线的交点就是旋转中心点G.

(2)∵G是旋转中心,且四边形ABCD是正方形,
∴FG=EG,∠FGE=90°
∵S△FGE=
FG2
2
,且由勾股定理,得2FG2=EF2
∴S△FGE=
EF2
4

设EC=x,则BF=x,BE=2a-x,在Rt△BEF中,由勾股定理,得
EF2=x2+(2a-x)2
∴S△FGE=
x2+(2a-x)2
4

∵S△FBE=
x(2a-x)
2

①当S△FGE=S△FBE时,则
x2+(2a-x)2
4
=
x(2a-x)
2

解得:x=a;
∴EC=a.
②当S△FGE=3S△FBE时,则
x2+(2a-x)2
4
=
x•(2a-x)
2
•3

∴2x2-4ax+a2=0,
解得:x=
2a+
2
a
2
或x=
2a-
2
a
2

∴EC=
2a+
2
a
2
或EC=
2a-
2
a
2

故答案为:a;
2a+
2
a
2
或EC=
2a-
2
a
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长是2,E、F分别在BC、CD两边上,且E、F与BC、CD两边的端点不重合,△AEF的面积是1,设BE=x,DF=y,求y关于x的函数解析式及自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,线段AB=CD=10cm.弧BC和弧DA是弧长与半径都相等的圆弧,曲边三角形BCD的面积,是以D为圆心,DC为半径的圆面积的
1
4
,则阴影部分的面积是(  )cm2
A.25πB.50πC.100D.200

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED;
①求证:△BEC≌△DEC;
②延长BE交AD于点F,若∠DEB=130°,求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知直线l1l2l3l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则sinα=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,EF与MN将正方形ABCD恰好分成两个矩形和两小正方形,如果AB=1,则正方形AMPE与正方形PFCN的周长和为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形ABCD中,点E、F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于(  )
A.
225
16
B.
256
15
C.
256
17
D.
289
16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,AB=4,点E是边CD上的任意一点(不与C、D重合),将△ADE沿AE翻折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)若设DE=x,BG=y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)连接CF,若AGCF,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知四边形ABCD是平行四边形,下列结论中正确的是(  )
A.当AB=BC时,它是菱形
B.当AC⊥BD时,它是矩形
C.当∠ABC=90°时,它是菱形
D.当AC=BD时,它是正方形

查看答案和解析>>

同步练习册答案