精英家教网 > 初中数学 > 题目详情
20.单项式-$\frac{4π{a}^{2}b}{5}$的系数是-$\frac{4π}{5}$,次数是3.

分析 单项式就是数与字母的乘积,数就是系数,所有字母指数的和就是次数,据此即可求解.

解答 解:单项式-$\frac{4π{a}^{2}b}{5}$的系数是-$\frac{4π}{5}$,次数是2+1=3.
故答案是:-$\frac{4π}{5}$,3.

点评 本题主要考查了单项式的系数与次数的定义,在写系数时,注意不要忘记前边的符号.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.已知a=-2,b=-7,c=6,则a-b+(-c)的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,点E在正方形ABCD内,AE=6,BE=8,AB=10.
(1)△ABE是直角三角形吗?为什么?
(2)请求出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=$\frac{4}{3}$.
(1)求栈道BC的长度;
(2)①设OM=x,圆形保护区⊙M的半径为y,求y关于x的函数关系式,并求出自变量x的取值范围;
②当点M位于何处时,可以使该圆形保护区的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知二次函数y=ax2+bx+c(c>0)的图象与x轴交于A、B两点(点A在原点左侧,点B在原点右侧),与y轴交于点C,且OB=OC=3OA=6,顶点为M.
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.将抛物线y=-$\frac{1}{2}$x2向左平移3个单位,再向上平移2个单位.
(1)写出平移后的抛物线的函数关系式.
(2)若平移后的抛物线的顶点为A,与x轴的两个交点分别是B、C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算(结果不含负整数指数幂):$\frac{{1+{x^{-1}}}}{{1-{x^{-1}}}}$=$\frac{x+1}{x-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线ln⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,ln分别交于点A1,A2,A3,…,An;函数y=2x的图象与直线l1,l2,l3,…,ln分别交于点B1,B2,B3,…,Bn,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…,四边形An-1AnBnBn-1的面积记作Sn,那么S2015=$\frac{4031}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知x,y为实数,且$y=\sqrt{x-2017}+\sqrt{2017-x}+1$,求x+y的值.

查看答案和解析>>

同步练习册答案