精英家教网 > 初中数学 > 题目详情
在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地之间的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;
(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.
(1)30千米  (2)20千米  (3)≤x≤≤x≤2
解:(1)x=0时,甲距离B地30千米,
所以,A、B两地的距离为30千米;
(2)由图可知,甲的速度:30÷2=15千米/时,
乙的速度:30÷1=30千米/时,
30÷(15+30)=
×30=20千米,
所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;
(3)设x小时甲、乙两人相距3km,
①若是相遇前,则15x+30x=30﹣3,
解得x=
②若是相遇后,则15x+30x=30+3,
解得x=
③若是甲到达B地前,而乙到达A地后按原路返回时,
则15x﹣30(x﹣1)=3,
解得x=
所以,当≤x≤≤x≤2时,甲、乙两人能够用无线对讲机保持联系.
(1)x=0时甲的y值即为A、B两地的距离;
(2)点M表示中途相遇时的情况,根据图象求出甲、乙两人的速度,进而求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;
(3)分相遇前、相遇后和乙到达A地后按原路返回时三种情况求出x的值,然后写出取值范围即可.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在一条直线上依次有A、B、C三地,自行车爱好者甲、乙两人同时分别从A、B两地出发,沿直线匀速骑向C地.已知甲的速度为20 km/h,设甲、乙两人行驶x(h)后,与A地的距离分别为y1、y2 (km), y1、y2 与x的函数关系如图所示.
(1)求y2与x的函数关系式;
(2)若两人在出发时都配备了通话距离为3km的对讲机,求甲、乙两人在骑行过程中可以用对讲机通话的时间.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与应付水费(元)的函数关系如图所示。
(1)求出当月用水量不超过5吨时,y与x之间的函数关系式;
(2)某居民某月用水量为8吨,求应付水费是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,点A(,0),点B(0,2),点C是线段OA的中点.
(1)点P是直线AB上的一个动点,当PC+PO的值最小时,
①画出符合要求的点P(保留作图痕迹);
②求出点P的坐标及PC+PO的最小值;
(2)当经过点O、C的抛物线y=ax2+bx+c与直线AB只有一个公共点时,求a的值并指出这个公共点所在象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,-6)且SDBP=27.
(1)求上述一次函数与反比例函数的表达式;
(2)设点Q是一次函数y=kx+3图象上的一点,且满足△DOQ的面积是△COD面积的2倍,直接写出点Q的坐标.
(3)若反比例函数的图象与△ABP总有公共点,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,直线与x轴相交于点A,与直线相交于点P(2,).

(1)请判断的形状并说明理由.
(2)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥轴于F,EB⊥轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.
求:① S与t之间的函数关系式.
② 当t为何值时,S最大,并求S的最大值

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为 ,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若一次函数的图象经过第一、二、三象限,则的取值范围是       .

查看答案和解析>>

同步练习册答案