精英家教网 > 初中数学 > 题目详情
精英家教网已知:抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3),B(-1,5)两点.
(1)求抛物线的解析式;
(2)设抛物线与x轴的另一个交点为C,以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连接MD,已知E点的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示);
(3)延长DM交⊙M于点N,连接ON,OD,当点P在(2)的条件下运动到什么位置时,能使得四边形EOMD和△DON的面积相等,请求出此时点P的坐标.
分析:(1)将O、A、B三点坐标代入抛物线的解析式中,即可求出待定系数的值,从而确定抛物线的解析式;
(2)连接EM;由于ED、EO都是⊙M的切线,根据切线长定理可得到ED=EO,根据SSS可证得△EDM≌△EOM,则它们的面积相等,因此四边形EOMD的面积其实是△EOM的面积的2倍,以OM为底,OE为长可求出△EOM的面积,即可得到四边形EOMD的面积表达式;
(3)△DON中,MN=DM,所以△DMO和△OMN等底同高,它们的面积相等;由此可证得△EOM与△OMD的面积相等,由于这两个三角形共用底边OM,则ED∥x轴,根据⊙M的半径即得到直线PD的解析式,联立抛物线的解析式即可求出P点的坐标.
解答:解:(1)∵抛物线过O(0,0),A(1,-3),B(-1,5)三点,
c=0
a+b+c=-3
a-b+c=5

解得
a=1
b=-4
c=0

∴抛物线的解析式为y=x2-4x;

(2)抛物线y=x2-4x与x轴的另一个交点坐标为C(4,0),连接EM;
∴⊙M的半径为2,即OM=DM=2;精英家教网
∵ED、EO都是⊙M的切线,
∴EO=ED,△EOM≌△EDM;
∴S四边形EOMD=2S△OME=2×
1
2
OM•OE=2m;

(3)延长DM交⊙M于点N,连接ON,OD,EM,
设点D的坐标为(x0,y0),
∵S△DON=2S△DOM=2×
1
2
OM×y0=2y0
当S四边形EOMD=S△DON时,即2m=2y0,m=y0
∵m=y0,ED∥x轴,
又∵ED为切线,
∴D点的坐标为(2,2);
∵P在直线ED上,故设P点的坐标为(x,2),
∵P在抛物线上,
∴2=x2-4x,
解得x=2±
6

∴P(2+
6
,2)或P(2-
6
,2)为所求.
点评:此题是二次函数与圆的综合题,考查了二次函数解析式的确定、全等三角形的性质、切线长定理、函数图象交点及图形面积的求法等重要知识,能够发现△EOM、△OMD的面积关系,从而得到直线PD与x轴的位置关系是解答(3)题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为
3
,抛物线与x轴交于点P、Q,问是否精英家教网存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令k=
c
a
,试问:是否存在实数k,使线段A1B1的长为4
2
.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示.
(1)顶点P的坐标是
(-1,4)
(-1,4)

(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=-x2-2x+3的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线数学公式,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为数学公式,抛物线与x轴交于点P、Q,问是否存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年四川省绵阳市南山中学自主招生考试数学试卷(解析版) 题型:解答题

已知:抛物线,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为,抛物线与x轴交于点P、Q,问是否存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案