精英家教网 > 初中数学 > 题目详情
(本小题满分10分)
如图14①至图14④中,两平行线ABCD音的距离均为6,点MAB上一定点.
思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点PCD的距离最小,最小值为____________.
探究一在图14①的基础上,以点M为旋转中心,在ABCD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点NCD的距离是______________.
探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点MABCD之间顺时针旋转.
⑴如图14③,当α=60°时,求在旋转过程中,点PCD的最小距离,并请指出旋转角∠BMO的最大值:
⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数据:sin49°=cos41°=tan37°=
            
解:思考   90,2.
探究一  30,2.
探究二、⑴由已知得的距离为4,∴当时,点的最大距离是4,从而点的最小距离为.
当扇形之间旋转到不能再转时,相切,此时旋转角最大,的最大值为90°.
⑵如图4,由探究一可知,点的切点时,达到最大,即.此时,延长于点最大值为.
如图5,当点上且与距离最小时,达到最小,连接,作于点,由垂径定理,得,在中,=4,
,∵,∴最小为.
的取值范围是.
解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本小题满分10分)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个.若从中任意摸出一个球,这个球是白球的概率为
(1)求口袋中红球的个数;
(2)把口袋中的球搅匀后摸出一个球,放回搅匀再摸出第二个球,求摸到的两个球是一红一白的概率.(请结合树状图或列表加以解答)

查看答案和解析>>

科目:初中数学 来源:2011年河北省中考模拟试卷数学卷 题型:解答题

(本小题满分10分)
如图,在平面直角坐标系中,直线L:y=-2x-8分别与x轴、y轴相交于A、B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P。

(1)连结PA,若PA=PB,试判断⊙P与X轴的位置关系,并说明理由;
(2)当K为何值时,以⊙P与直线L的两个交点和圆心P为顶点的三角形是正三角形?

查看答案和解析>>

科目:初中数学 来源:2011年四川省盐源县民族中学中考模拟试题数学卷 题型:解答题

(本小题满分10分)如图,在等腰梯形ABCD中,ADBCAB=DC=5,AD=6,BC=12.动点PD点出发沿DC以每秒1个单位的速度向终点C运动,动点QC点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.

【小题1】(1)求梯形ABCD的面积;
【小题2】(2)当P点离开D点几秒后,PQ//AB
【小题3】(3)当PQC三点构成直角三角形时,求点P从点D运动的时间?

查看答案和解析>>

科目:初中数学 来源:2011-2012年河北省衡水市五校九年级第三次联考数学卷 题型:解答题

(本小题满分10分)如图,在平面直角坐标系中,点A、B、C、P的坐标分别为(0,1)、(-1,0)、(1,0)、(-1,-1)。

【小题1】(1)求经过A、B、C三点的抛物线的表达式;
【小题2】(2)以P为位似中心,将△ABC放大,使得放大后的△A1B1C1
与△OAB对应线段的比为3:1,请在右图网格中画出放大
后的△A1B1C1;(所画△A1B1C1与△ABC在点P同侧);
【小题3】(3)经过A1、B1、C1三点的抛物线能否由(1)中的抛物线平
移得到?请说明理由。

查看答案和解析>>

科目:初中数学 来源:2012届河南省商丘市九年级上学期期末考试数学卷 题型:解答题

(本小题满分10分)
在图1至图3中,直线MN与线段AB相交
于点O,∠1 = ∠2 = 45°.

【小题1】(1)如图1,若AO OB,请写出AOBD
的数量关系和位置关系;
【小题2】(2)将图1中的MN绕点O顺时针旋转得到
图2,其中AO = OB
求证:AC BDAC ⊥ BD
【小题3】(3)将图2中的OB拉长为AOk倍得到
图3,求的值.

查看答案和解析>>

同步练习册答案