分析 先将原式进行变形,然后进行分解,再化简即可解答本题.
解答 解:$\frac{\frac{2}{{x}^{2}-1}+\frac{4}{{x}^{2}-4}+…+\frac{20}{{x}^{2}-100}}{\frac{1}{(x-1)(x+10)}+\frac{1}{(x-2)(x+9)}+…+\frac{1}{(x-10)(x+1)}}$
=$\frac{\frac{(x+1)-(x-1)}{(x+1)(x-1)}+\frac{(x+2)-(x-2)}{(x+2)(x-2)}+…+\frac{(x+10)-(x-10)}{(x+10)(x-10)}}{\frac{1}{11}[(\frac{1}{x-1}-\frac{1}{x+10})+(\frac{1}{x-2}-\frac{1}{x+9})+…+(\frac{1}{x-10}-\frac{1}{x+1})]}$
=$\frac{(\frac{1}{x-1}+\frac{1}{x-2}+…+\frac{1}{x-10})-(\frac{1}{x+1}+\frac{1}{x+2}+…+\frac{1}{x+10})}{\frac{1}{11}[(\frac{1}{x-1}+\frac{1}{x-2}+…+\frac{1}{x-10})-(\frac{1}{x+1}+\frac{1}{x+2}+…+\frac{1}{x+10})]}$
=11.
故答案为:11.
点评 本题考查分式的混合运算,解题的关键是巧妙的对分式的分子和分母进行分解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com